毕清华, 范英, 蔡圣华, 等, 2013. 基于CDECGE模型的中国能源需求情景分析[J]. 中国人口·资源与环境, 23(1): 41-48.〔BI Q H, FAN Y, CAI S H, et al, 2013. Analysis of China's primary energy demand scenarios based on the CDECGE model[J]. China Population, Resources and Environment, 23(1): 41-48.〕
曹俊文, 张钰玲, 2022. 中国省域碳排放特征与碳减排路径研究[J]. 生态经济, 2022, 38(8): 13-19.〔CAO J W, ZHANG Y L, 2022. Research on carbon emission characteristics and reduction pathways of provinces in China[J]. Ecological Economy, 38(8): 13-19.〕
钞小静, 2020. 未来十年增长潜力预测与“十四五”时期战略目标、战略重点[J]. 浙江工商大学学报(5): 125-133.〔CHAO X J, 2020. Forecast of growth potential in the next ten years as well as strategic objectives and key points in the 14th Five-Year Plan period[J]. Journal of Zhejiang Gongshang University(5): 125-133.〕
杜焱, 胡鑫杨, 2022. 我国2030年实现碳达峰路径研究: 基于经济、能源、碳排放系统的SD模型[J]. 资源与产业, 24(5): 19-28.〔DU Y, HU X Y, 2022. An approach China's 2030 carbon peak based on SD model on economy, energy and carbon emission system[J]. Resources & Industries, 24(5): 19-28.〕
公维凤, 王传会, 周德群, 等, 2013. 双强度约束下行业低碳经济增长路径优化研究[J]. 中国人口·资源与环境, 23(6): 29-36.〔GONG W F, WANG C H, ZHOU D Q, et al, 2013. The optimal low-carbon economic growth path of industries under the restriction of double intensity[J]. China Population, Resources and Environment, 23(6): 29-36.〕
刘伟, 范欣, 2019. 中国发展仍处于重要战略机遇期: 中国潜在经济增长率与增长跨越[J]. 管理世界, 35(1): 13-23.〔LIU W, FAN X, 2019. China remains in an important period of strategic opportunities of its development: Chinas potential growth rate and growth leaps[J]. Journal of Management World, 35(1): 13-23.〕
刘小丽, 王永利, 2022. 基于LMDI分解的中国制造业碳排放驱动因素分析[J]. 统计与决策, 38(12): 60-63.
唐晓华, 张欣钰, 李阳, 2018. 中国制造业产业结构优化调整研究: 基于低碳、就业、经济增长多重约束视角[J]. 经济问题探索(1): 147-154.
王利兵, 张赟, 2021. 中国能源碳排放因素分解与情景预测[J]. 电力建设, 42(9): 1-9.〔WANG L B, ZHANG Y, 2021. Factors decomposition and scenario prediction of energy-related CO2 emissions in China[J]. Electric Power Construction, 42(9): 1-9.〕
王深, 吕连宏, 张保留, 等, 2021. 基于多目标模型的中国低成本碳达峰、碳中和路径[J]. 环境科学研究, 34(9): 2044-2055.〔WANG S, LV L H, ZHANG B L, et al, 2021. Multi objective programming model of low-cost path for China's peaking carbon dioxide emissions and carbon neutrality[J]. Research of Environmental Sciences, 34(9): 2044-2055.〕
王新利, 黄元生, 刘诗剑, 2020. 优化能源消费结构对河北省碳强度目标实现的贡献潜力分析[J]. 运筹与管理, 29(12): 140-146.〔WANG X L, HUANG Y S, LIU S J, 2020. Potential assessment of optimizing energy structure to carbon intensity target in Hebei
province[J].Operations Research and Management Science, 29(12):140-146.〕
王勇, 王恩东, 毕莹, 2017. 不同情景下碳排放达峰对中国经济的影响: 基于CGE模型的分析[J]. 资源科学, 39(10): 1896-1908.〔WANG Y, WANG E D, BI Y, 2017. Impact of a peak in carbon emissions on China's economy in different situations: analysis based on CGE model[J]. Resources Science, 39(10): 1896-1908.〕
王勇, 王颖, 2019. 中国实现碳减排双控目标的可行性及最优路径: 能源结构优化的视角[J]. 中国环境科学, 39(10): 4444-4455.〔WANG Y, WANG Y, 2019. Feasibility and optimal pathway of China's double targets for carbon reduction: the perspective of energy structure optimization[J]. China Environmental Science, 39(10): 4444-4455.〕
许文浩, 解玉磊, 嵇灵, 等, 2022. 基于投入产出和生态网络分析的广东省能源消费行业差异研究[J]. 资源与产业, 24(6): 44-53.〔XU W H, XIE Y L, JI L, et al, 2022. Variance study on Guangdong's energy consumption sector based on input/output & ecological network analysis[J]. Resources & Industries, 24(6): 44-53.〕
徐忠, 贾彦东, 2019. 中国潜在产出的综合测算及其政策含义[J]. 金融研究(3): 1-17.〔XU Z, JIA Y D, 2019. Estimation of China's potential output and its policy implications[J]. Journal of Financial Research(3): 1-17.〕
张平淡, 屠西伟, 2022. 制造业集聚、技术进步与企业全要素能源效率[J]. 中国工业经济(7): 103-121.〔ZHANG P D, TU X W,
2022. Manufacturing agglomeration, technological progress and enterprise total factor energy efficiency[J]. China Industrial Economics(7): 103-121.〕
张珣, 扶昭, 林刚, 等, 2020. 基于碳排放约束的山东省沿海城镇带能源发展多目标优化决策[J]. 科技导报, 38(11): 89-97.〔ZHANG X, FU Z, LIN G, et al. Multi-objective optimal decision-making of energy development in coastal town belt of Shandong province with carbon emission constraints[J]. Science & Technology Review, 38(11): 89-97.〕
张云, 邓桂丰, 李秀珍, 2015. 经济新常态下中国产业结构低碳转型与成本测度[J]. 上海财经大学学报, 17(4): 10-20.〔ZHANG Y, DENG G F, LI X Z, 2015. Low-carbon transition of Chinese industrial structure and cost measurement under chinese economy's new normal[J]. Journal of Shanghai University of Finance and Economics, 17(4): 10-20.〕
钟超, 刘宇, 汪明月, 等, 2018. 中国碳强度减排目标实现的路径及可行性研究[J]. 中国人口·资源与环境, 28(10): 18-26.〔ZHONG C, LIU Y, WANG M Y, et al, 2018. Feasibility study on China's potential paths to intensity-based carbon reduction targets[J]. China Population, Resources and Environment, 28(10): 18-26.〕
CHANG N, 2015. Changing industrial structure to reduce carbon dioxide emissions: a Chinese application[J]. Journal of Cleaner Production, 103: 40-48.
LIU H X, ZHANG J, YUAN J H, 2022. Can China achieve its climate pledge: a multi-scenario simulation of China's energy-related CO2 emission pathways based on Kaya identity[J]. Environmental Science and Pollution Research, 29(49): 74480-74499.
MI Z F, WEI Y M, WANG B, et al, 2017. Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030[J]. Journal of Cleaner Production, 142: 2227-2236.
SONG J N, YANG W, WANG S, et al, 2018. Exploring potential pathways towards fossil energy-related GHG emission peak prior to 2030 for China: an integrated input-output simulation model[J]. Journal of Cleaner Production, 178: 688-702.
WORRELL E, BERNSTEIN L, ROY J, et al, 2009. Industrial energy efficiency and climate change mitigation[J]. Energy efficiency, 2(2): 109-123.
XIAO H W, MA Z Y, ZHANG P, et al, 2019. Study of the impact of energy consumption structure on carbon emission intensity in China from the perspective of spatial effects[J]. Natural Hazards, 99(3): 1365-1380.
YU S W, ZHENG S H, BA G Z, et al, 2016. Can China realise its energy-savings goal by adjusting its industrial structure?[J]. Economic Systems Research, 28(2): 273-293.
YU S W, ZHENG S H, ZHANG X J, et al, 2018. Realizing China's goals on energy saving and pollution reduction: industrial structure multi-objective optimization approach[J]. Energy policy, 122: 300-312.
ZHANG L B, JIANG Z J, LIU R K, et al, 2018. Can China achieve its CO2 emission mitigation target in 2030: a system dynamics perspective[J]. Polish Journal of Environmental Studies, 27(6): 2861-2871.
|