边宇 , 蔺雪芹, 周笑, 等, 2021. 京津冀工业碳排放时空演化特征及影响因素[J]. 现代科学与技术, 40(11): 37-47.〔BIAN Y, LIN X Q, ZHOU X, et al, 2021. Spatial-temporal evolution
characteristics and influencing factors of industrial carbon emissions in
Beijing-Tianjin-Hebei region[J]. Modern Science and Technology, 40(11): 37-47.〕
高新伟, 朱源, 2020. 科研投入抑制碳排放了吗: 基于 LMDI 模型和 STIRPAT 模型的碳排放影响因素分析[J]. 资源与产业, 22(6): 37-45.〔GAO X W, ZHU Y, 2020. Is investment in research curbing carbon
emissions: analysis of influencing factors of carbon emissions based on LMDI
model and STIRPAT model[J]. Resources and Industry, 22(6): 37-45.〕
高长春, 刘贤赵, 李朝奎, 等, 2016. 近20年来中国能源消费碳排放时空格局动态[J]. 地理科学进展, 35(6): 747-757.〔GAO C C, LIU X Z, LI C K, et al, 2016. Spatial and temporal dynamics
of carbon emissions from energy consumption in China in the past 20 years[J].
Progress in Geography, 35(6): 747-757.〕
关伟, 郭岫垚, 许淑婷, 2020. 辽宁省碳排放量及其效率时空差异研究[J]. 首都师范大学学报(自然科学版), 41(5): 66-73.〔GUAN W, GUO X Y, XU S T, 2020. Study on spatiotemporal differences
in carbon emissions and efficiency in Liaoning Province[J]. Journal of Capital
Normal University (Natural Science Edition), 41(5): 66-73.〕
何艳芬, 王瑛, 2020. 中国省域二氧化碳排放的时空格局及影响因素[J]. 世界地理研究, 29(3): 512-522.〔HE Y F, WANG Y, 2020. Spatial-temporal pattern and influencing
factors of provincial carbon dioxide emissions in China[J]. World Geographical
Research, 29(3): 512-522.〕
黄羿, 李冬梅, 李永田, 等, 2021. 交通运输业碳排放的时空变化特征及影响因素: 基于全国与经济区域层面[J]. 环境保护科学, 40(4): 62-70.〔HUANG Y, LI D M, LI Y T, et al, 2021. Spatial-temporal variation characteristics
and influencing factors of carbon emissions in transportation industry: based
on national and economic regional levels[J]. Environmental Protection Science,
40(4): 62-70.〕
姜宛贝, 韩梦瑶, 唐志鹏, 等, 2019. 国际制造业区位变迁的碳排放效应研究[J]. 地理科学, 39(10): 1553-1560.〔JIANG W B, HAN M Y, TANG Z P, et al, 2019. Study on carbon emission
effect of international manufacturing location change[J]. Scientia Geographica,
39(10): 1553-1560.〕
李硕硕, 刘耀彬, 骆康, 2022. 环鄱阳湖县域新型城镇化对碳排放强度的空间溢出效应[J]. 资源科学, 44(7): 1449-1462.〔LI S S, LIU Y B, LUO K, 2022. Spatial spillover effect of new
urbanization on carbon emission intensity in Poyang Lake County[J]. Resources
Science, 44(7): 1449-1462.〕
蔺雪芹, 边宇, 王岱, 2021. 京津冀地区工业碳排放效率时空演化特征及影响因素[J]. 经济地理, 41(6): 187-195.〔LIN X Q, BIAN Y, WANG D, 2021. Spatial-temporal evolution
characteristics and influencing factors of industrial carbon emission
efficiency in Beijing-Tianjin-Hebei region[J]. Economic Geography, 41(6): 187-195.〕
刘华军, 邵明吉, 吉元梦, 2021. 中国碳排放的空间格局及分布动态演进: 基于县域碳排放数据的实证研究[J]. 地理科学, 11(41): 1917-1924.〔LIU H J, SHAO M J, JI Y M, 2021. Spatial pattern and dynamic
evolution of carbon emissions distribution in China: an empirical study based
on county carbon emission data[J]. Scientia Geographica, 11(41): 1917-1924.〕
刘佳, 宋秋月, 2018. 中国旅游产业绿色创新效率的空间网络结构与形成机制[J]. 中国人口·资源与环境, 28(8): 127-137.〔LIU J, SONG Q Y, 2018. Spatial network structure and formation
mechanism of green innovation efficiency in China ‘s tourism industry[J].
Chinese Mouth Resources and Environment, 28(8): 127-137.〕
刘军, 2014. 整体网分析: UCINET软件实用指南[M]. 2版. 上海: 格致出版社.〔LIU J, 2014. Holistic network analysis: a practical guide to UCINET
software[M]. 2nd ed. Shanghai: Gezhi Publishing House.〕
刘卫东, 姜宛贝, 2021. 中国经济空间格局演变及其CO2排放效应[J]. 资源科学, 43(4): 722-732.〔LIU W D, JIANG W B, 2021. Evolution of China ‘s economic spatial
pattern and its CO2 emission effect[J]. Resources Science, 43(4): 722-732.〕
曲建升, 刘莉娜, 曾静静, 等, 2017. 中国居民生活碳排放增长路径研究[J]. 资源科学, 39(12): 2389-2398.〔QU J S, LIU L N, ZENG J J, et al, 2017. Research on the growth path
of carbon emissions in China[J]. Resources Science, 39(12): 2389-2398.〕
田华征, 马丽, 2020. 中国工业碳排放强度变化的结构因素解析[J]. 自然资源学报, 35(3): 639-653.〔TIAN H Z, MA L, 2020. Analysis of structural factors of changes in
industrial carbon emission intensity in China[J]. Journal of Natural Resources,
35(3): 639-653.〕
田泽, 张宏阳, 纽文婕, 2021. 长江经济带碳排放峰值预测与减排策略[J]. 资源与产业, 21(1): 97-105.〔TIAN Z, ZHANG H Y, NIU W J, 2021. Peak carbon emission prediction
and emission reduction strategy in the Yangtze River Economic Belt[J].
Resources and Industries, 2 1(1): 97-105.〕
王凯, 邵海琴, 周婷婷, 等, 2018. 基于EKC框架的旅游发展对区域碳排放的影响分析: 基于1995-2015年中国省际面板数据[J]. 地理研究, 37(4): 742-750.〔WANG K, SHAO H Q, ZHOU T T, et al, 2018. Impact analysis of tourism
development on regional carbon emissions based on EPC framework: based on China
‘s Interprovincial Panel Data from 1995 to 2015[J]. Geographical Research,
37(4): 742-750.〕
王凯, 唐小惠, 甘畅, 等, 2021. 中国服务业碳排放强度时空格局及影响因素[J]. 中国人口·资源与环境, 31(8): 23-31.〔WANG K, TANG X H, GAN C, et al, 2021. Spatial-temporal pattern and
influencing factors of carbon emission intensity of China ‘s service industry[J].
Chinese Resources and Environment, 31(8): 23-31.〕
王凯, 张淑文, 甘畅, 等, 2020. 中国旅游业碳排放效率的空间网络结构及其效应研究[J]. 地理科学, 40(3): 344-353.〔WANG K, ZHANG S W, GAN C, et al, 2020. Spatial network structure and
its effect of carbon emission efficiency in China ‘s tourism industry[J].
Scientia Geographica, 40(3): 344-353.〕
王丽萍, 刘明浩, 2018. 基于投入产出法的中国物流业碳排放测算及影响因素研究[J]. 资源科学, 40(1): 195-206.〔WANG L P, LIU M H, 2018. Carbon emission estimation and influencing
factors of China ‘s logistics industry based on input-output method[J].
Resources Science, 40(1): 195-206.〕
王少剑, 田莎莎, 蔡清楠, 等, 2021. 产业转移背景下广东省工业碳排放的驱动因素及碳转移分析[J]. 地理研究, 40(9): 2606-2622.〔WANG S J, TIAN S S, CAI Q N, et al, 2021. Driving factors and carbon
transfer analysis of industrial carbon emissions in Guangdong Province under
the background of industrial transfer[J]. Geographical Research, 40(9): 2606-2622.〕
王少剑, 苏泳娴, 赵亚博, 2018. 中国城市能源消费碳排放的区域差异、空间溢出效应及影响因素[J]. 地理学报, 73(3): 414-428.〔WANG S J, SU Y X, ZHAO Y B, 2018. Regional differences, spatial
spillover effects and influencing factors of carbon emissions from urban energy
consumption in China[J]. Acta Geographica Sinica, 73(3): 414-428.〕
王晓平, 冯庆, 宋金昭, 2020. 成渝城市群碳排放空间关联结构演化及影响因素[J]. 中国环境科学, 40(9): 4123-4134.〔WANG X P, FENG Q, SONG J Z, 2020. Spatial correlation structure
evolution and influencing factors of carbon emissions in Chengdu-Chongqing
urban agglomeration[J]. China Environmental Science, 40(9): 4123-4134.〕
王霞, 张丽君, 秦耀辰, 等, 2020. 中国制造业碳排放时空演变及驱动因素研究[J]. 干旱区地理, 43(2): 536-545.〔WANG X, ZHANG L J, QIN Y C, et al, 2020. Spatial-temporal evolution
and driving factors of carbon emissions in China ‘s manufacturing industry[J].
Arid Land Geography, 43(2): 536-545.〕
吴青龙, 王建明, 郭丕斌, 2018. 开放STIRPAT模型的区域碳排放峰值研究: 以能源生产区域山西省为例[J]. 资源科学, 40(5): 1051-1062.〔WU Q L, WANG J M, GUO P B, 2018. Study on regional carbon emission
peak of open STIRPAT model: a case study of energy production region in Shanxi
Province[J]. Resources Science, 40(5): 1051-1062.〕
尹龙, 杨亚男, 章刘成, 2021. 中国居民消费碳排放峰值预测与分析[J]. 新疆社会科学 (4): 42-50.〔YIN L, YANG Y N, ZHANG L C, 2021. Prediction and analysis of peak
carbon emissions from household consumption in China[J]. Xinjiang Social
Sciences (4): 42-50.〕
郑航, 叶阿忠, 2022. 城市群碳排放空间关联网络结构及其影响因素[J]. 中国环境科学, 42(5): 2413-2422.〔ZHENG H, YE A Z, 2022. Spatial correlation network structure and
influencing factors of carbon emissions in urban agglomerations[J]. China
Environmental Science, 42(5): 2413-2422.〕
赵若楠, 董莉, 白璐, 等, 2020. 光伏行业生命周期碳排放清单分析[J]. 中国环境科学, 40(6): 2751-2757.〔ZHAO R N, DONG L, BAI L, et al, 2020. Life cycle carbon emission
inventory analysis of photovoltaic industry[J]. China Environmental Science,
40(6): 2751-2757.〕
朱灵伟, 李冬青, 罗罡辉, 等, 2019. 农地碳排放影响因素空间差异性研究: 基于STIRPAT和GWR模型的实证分析[J]. 资源与产业, 21(6): 82-91.〔ZHU L W, LI D Q, LUO G H, et al, 2019. Spatial differences of
influencing factors of farmland carbon emissions: an empirical analysis based
on STIRPAT and GWR model[J]. Resources and Industry, 21(6): 82-91.〕
LIU L N, QU J S, ZHANG Z Q, et al, 2018.
Assessment and determinants of per capita household CO2 emissions (PHCEs) based
on capital city level in China[J]. Journal of Geographical Sciences, 28(10):
1467-1484.
WANG B, WANG L M, XIANG N, et al, 2022.
Analysis of the driving factors of carbon emissions and countermeasures for
carbon emission reduction in Hebei Province[J]. Journal of Resources and
Ecology, 13(2): 220-230.
XU P, TAO X M, ZHANG H, et al, 2021. CO2 emissions from the electricity sector during China ‘s economic transition: from
the production to the consumption perspective[J]. Sustainable Production and
Consumption, 27: 1010-1020.
|