蔡博峰, 李琦, 林千果, 等, 2020. 中国二氧化碳捕集、利用与封存(CCUS)报告(2019)[R]. 北京: 生态环境部环境规划院气候变化与环境政策研究中心.
蔡博峰, 李琦, 张贤, 等, 2021. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021): 中国CCUS路径研究[R]. 北京: 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心.
胡永乐, 郝明强, 2020. CCUS产业发展特点及成本界限研究[J]. 油气藏评价与开发, 10(3): 15-22, 2. 〔HU Y L, HAO M Q, 2020. Development characteristics and cost analysis of CCUS in China[J]. Petroleum Reservoir Evaluation and Development, 10(3): 15-22, 2.〕
科学技术部社会发展科技司, 中国21世纪议程管理中心, 2019. 中国碳捕集利用与封存技术发展路线图(2019版)[M]. 北京:科学出版社. 〔SOCIAL DEVELOPMENT SCIENCE AND TECHNOLOGY DEPARTMENT OF MINISTRY OF SCIENCE AND TECHNOLOGY OF THE PEOPLE'S REPUBLIC OF CHINA, THE ADMINISTRATIVE CENTER FOR CHINA'S AGENDA 21, 2019. Roadmap for carbon capture, utilization and storage technology development in China(2019)[M]. BeiJing: Science Press.〕
林伯强, 李江龙, 2015. 环境治理约束下的中国能源结构转变: 基于煤炭和二氧化碳峰值的分析[J]. 中国社会科学(9): 84-107, 205. 〔LIN B Q, LI J L, 2015. Transformation of China's energy structure under environmental governance constraints: a peak value analysis of coal and carbon dioxide[J]. Social Sciences in China(9): 84-107, 205.〕
刘峰, 曹文君, 张建明, 等, 2021. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 46(1): 1-15. 〔LIU F, CAO W J, ZHANG J M, et al., 2021. Current technological innovation and development of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society, 46(1): 1-15.〕
刘炯天, 2011. 关于我国煤炭能源低碳发展的思考[J]. 中国矿业大学学报(社会科学版), 13(1): 5-12. 〔LIU J T, 2011. Reflection on low-carbon development of coal energy in China[J]. Journal of China University of Mining & Technology(Social Sciences), 13(1): 5-12.〕
刘臻, 次东辉, 方薪晖, 等, 2022. 基于含碳废弃物与煤共气化的碳循环概念及碳减排潜力分析[J]. 洁净煤技术, 28(2): 130-136. 〔LIU Z, CI D H, FANG X H, et al., 2022. Concept of carbon cycle based on co-gasification of carbon containing waste and coal and analysis of carbon emission reduction potential[J]. Clean Coal Technology, 28(2): 130-136.〕
孙旭东, 张博, 彭苏萍, 2020. 我国洁净煤技术2035发展趋势与战略对策研究[J]. 中国工程科学, 22(3): 132-140. 〔SUN X D, ZHANG B, PENG S P, 2020. Development trend and strategic countermeasures of clean coal technology in China toward 2035[J]. Strategic Study of CAE, 22(3): 132-140.〕
陶怡, 王强, 田华, 等, 2023. 现代煤化工项目 CCUS 减排路径问题分析[J]. 中国煤炭, 49(2): 103-108. 〔TAO Y, WANG Q, TIAN H, et al., 2023. Analysis on key issues of CCUS emission reduction path for modern coal chemical project[J]. China Coal, 49(2): 103-108.〕
汪寿建, 2016. 现代煤气化技术发展趋势及应用综述[J]. 化工进展, 35(3): 653-664. 〔WANG S J, 2016. Development and application of modern coal gasification technology[J]. Chemical Industry and Engineering Progress, 35(3): 653-664.〕
魏宁, 姜大霖, 刘胜男, 等, 2020. 国家能源集团燃煤电厂CCUS改造的成本竞争力分析[J]. 中国电机工程学报, 40(4): 1258-1265, 1416. 〔WEI N, JIANG D L, LIU S N, et al., 2020. Cost competitiveness analysis of retrofitting CCUS to coal-fired power plants[J]. Proceedings of the CSEE, 40(4): 1258-1265, 1416.〕
魏宁, 刘胜男, 李小春, 2021. 中国煤化工行业开展CO2强化深部咸水开采技术的潜力评价[J]. 气候变化研究进展, 17(1): 70-78. 〔WEI N, LIU S N, LI X C, 2021. Evaluation on potential of CO2 enhanced water recovery deployment in China's coal chemical industry[J]. Climate Change Research, 17(1): 70-78.〕
武娟妮, 张岳玲, 田亚峻, 等, 2015. 新型煤化工的生命周期碳排放趋势分析[J]. 中国工程科学, 17(9): 69-74. 〔WU J N, ZHANG Y L, TIAN Y J, et al., 2015. Analysis on carbon emission based on the life cycle of new coal chemical industry[J]. Strategic Study of CAE, 17(9): 69-74.〕
武强, 涂坤, 曾一凡, 等, 2019. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 44(6): 1625-1636. 〔WU Q, TU K, ZENG Y F, et al., 2019. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China[J]. Journal of China Coal Society, 44(6): 1625-1636.〕
相宏伟, 杨勇, 李永旺, 2022. 碳中和目标下的煤化工变革与发展[J]. 化工进展, 41(3): 1399-1408. 〔XIANG H W, YANG Y, LI Y W, 2022. Transformation and development of coal chemical industry under the goal of carbon neutralization[J]. Chemical Industry and Engineering Progress, 41(3): 1399-1408.〕
徐玉兵, 宋东昱, 骆亮, 2022. 中国煤化工碳捕集利用与封存基础设施建设需求预测[J]. 国际石油经济, 30(7): 1-13. 〔XU Y B, SONG D Y, LUO L, 2022. The demand forecast of carbon capture, utilization and storage infrastructure construction for coal chemical industry in China[J]. International Petroleum Economics, 30(7): 1-13.〕
闫国春, 温亮, 张华, 2022. 现代煤化工产业发展路径分析[J]. 化工进展, 41(12): 6201-6212. 〔YAN G C, WEN L, ZHANG H, 2022. Analysis of development path of modern coal chemical industry[J]. Chemical Industry and Engineering Progress, 41(12): 6201-6212.〕
张健, 梁钦锋, 郭庆华, 等, 2008. 煤化工行业CO2的排放及减排分析[J]. 煤化工, 36(6): 8-12. 〔ZHANG J, LIANG Q F, GUO Q H, et al., 2008. Analysis on potential reduction of carbon dioxide emissions of coal-based chemical industry[J]. Coal Chemical Industry, 36(6): 8-12.〕
张贤, 李阳, 马乔, 等, 2021. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 23(6): 70-80. 〔ZHANG X, LI Y, MA Q, et al., 2021. Development of carbon capture, utilization and storage technology in China[J]. Strategic Study of CAE, 23(6): 70-80.〕
CHEN J K, XIANG D, 2019. Carbon efficiency and carbon abatement costs of coal-fired power enterprises: a case of Shanghai, China[J]. Journal of cleaner production, 206: 452-459.
FAN J L, XU M, LI F Y, et al., 2018. Carbon capture and storage(CCS)retrofit potential of coal-fired power plants in China: the technology lock-in and cost optimization perspective[J]. Applied energy, 229: 326-334.
HU B Y, ZHAI H B, 2017. The cost of carbon capture and storage for coal-fired power plants in China[J]. International journal of greenhouse gas control, 65: 23-31.
IEA, 2016. Ready for CCS retrofit: the potential for equipping China's existing coal fleet with carbon capture and storage[R/OL]. (2016-11-21) [2023-08-20]. https://iea. blob. core. windows. net/assets/bf8affe9-9968-4a36-930b-fb3ce7cf0d20/ReadyforCCS Retrofit.pdf.
IPCC, 2018. Global warming of 1.5℃: summary for policymakers[M]. Cambridge: Cambridge University Press.
LI X C, WEI N, JIAO Z S, et al., 2019. Cost curve of large-scale deployment of CO2 enhanced water recovery technology in modern coal chemical industries in China[J]. International journal of greenhouse gas control, 81: 66-82.
SUN L L, DOU H G, LI Z P, et al., 2018. Assessment of CO2 storage potential and carbon capture, utilization and storage prospect in China[J]. Journal of the Energy Institute, 91(6): 970-977.
TURNER M, IYENGAR A, WOODS M, 2020. Cost and performance baseline for fossil energy plants supplement: sensitivity to CO2 capture rate in coal-fired power plants[R]. Pittsburgh: U.S. Department of Energy National Energy Technology Laboratory.
XIE J J, LI X Y, GAO X, 2022. Pipeline network options of CCUS in coal chemical industry[J]. Atmosphere, 13: 1864.
ZIEMKIEWICZ P, STAUFFER P H, SULLIVANGRAHAM J, et al., 2016. Opportunities for increasing CO2 storage in deep, saline formations by active reservoir management and treatment of extracted formation water: case study at the GreenGen IGCC facility, Tianjin, PR China[J]. International Journal of Greenhouse Gas Control, 54: 538-556.
|