白佳凯, 李朋喜, 乔东伟, 2023. 水电解制氢技术现状与展望[J]. 现代化工,43(S1): 63-65. 〔BAI J K, LI P X, QIAO D W, 2023. Current situation and prospect on hydrogen production by water electrolysis[J]. Modern Chemical Industry, 43(S1): 63-65.〕
蔡国伟, 孔令国, 彭龙, 等, 2016. 基于氢储能的主动型光伏发电系统建模与控制[J]. 太阳能学报, 37(10): 2451-2459. 〔CAI G W, KONG L G, PENG L, et al., 2016. Modeling and control of active PV generation system based on hydrogen storage[J]. Acta Energiae Solaris Sinica, 37(10): 2451-2459.〕
潘光胜,顾钟凡,罗恩博,等, 2023. 新型电力系统背景下的电制氢技术分析与展望[J]. 电力系统自动化, 47(10): 1-13. 〔PAN G S, GU Z F, LUO E B, et al., 2023, Analysis and prospect of electrolytic hydrogen technology under background of new power systems[J]. Automation of Electric Power Systems, 47(10): 1-13.〕
斯琴卓娅, 晓敏, 郑世鹏, 等, 2022. 考虑风光出力不确定性的含电制氢装置的电-气耦合配网系统经济运行分析[J]. 技术经济, 41(11): 24-39. 〔SI QIN Z Y, XU X M, ZHENG S P, et al., 2022. Economic operation analysis of integrated electric-gas distribution system considering E2H conversion process and uncertainty [J]. Journal of Technology Economics, 41(11): 24-39.〕
檀勤良, 单子婧, 丁毅宏, 等, 2023. 考虑蓄电池与电制氢的多能源微网灵活性资源配置双层优化模型[J]. 电力建设, 44(2): 38-49. 〔TAN Q L, SHAN Z J, DING Y H, et al., 2023. Bi-level optimal configuration for flexible resources of multi-energy microgrid considering storage battery and P2H[J]. Electric Power Construction, 44(2): 38-49.〕
王明华, 2023. 新能源电解水制氢技术经济性分析[J]. 现代化工, 43(5): 1-5. 〔WANG M H, 2023. Technical economic analysis on hydrogen production from water electrolysis by new energy[J]. Modern Chemical Industry, 43(5): 1-5.〕
王彦哲, 欧训民, 周 胜, 2022. 基于学习曲线的中国未来制氢成本趋势研究[J]. 气候变化研究进展, 18(3): 283-293. 〔WANG Y Z, OU X M, ZHOU S, 2022. Future cost trend of hydrogen production in China based on learning curve[J]. Climate Change Research, 18(3): 283-293.〕
王子琳, 鲁玺, 庄明浩, 等, 2020. 中国三北地区风—光互补发电系统空间优化研究[J]. 全球能源互联网, 3(1): 97-104. 〔WANG Z L, LU X, ZHUANG M H, et al., 2020. Spatial optimization of windPV hybrid energy systems for the three-north region in China[J]. Journal of Global Energy Interconnection, 3(1): 97-104.〕
张红, 袁铁江, 谭捷, 等, 2022. 面向统一能源系统的氢能规划框架[J]. 中国电机工程学报, 42(1): 83-94. 〔ZHANG H, YUAN T J, TAN J, et al., 2022. Hydrogen energy system planning framework for unified energy system [J]. Proceedings of the CSEE, 42(1): 83-94.〕
许晓敏, 彭露瑶, 纪正森, 等, 2023. 北京市氢燃料电池汽车发展潜力预测分析[J]. 技术经济, 42(3): 52-63. 〔XU X M, PENG L Y, JI Z S, et al., 2023, Analysis on development potential of hydrogen fuel cell vehicle in Beijing[J]. Journal of Technology Economics, 42(3): 52-63.〕
ABDIN Z,ZAFARANLOO A,RAFIEEA,et al., 2020. Hydrogen as an energy vector [J]. Renewable and Sustainable Energy Reviews, 120: 109620.
BOLWIG S, BAZBAUERS G, KLITKOU A, et al., 2019. Review of modelling energy transitions pathways with application to energy system flexibility[J]. Renewable & Sustainable Energy Reviews, 101: 440-452.
CHAI S, ZHANG G J, LI G Q, et al., 2021. Industrial hydrogen production technology and development status in China: a review [J]. Clean technologies and environmental policy, 23(7):1931-1946.
FAN J L, YU P W, LI K, et al., 2022. A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China[J]. Energy, 242: 123003.
HUANG Y S, LIU S J, 2020. Chinese green hydrogen production potential development: a provincial case study[J]. IEEE Access, 8: 171968-171976.
HUANG J B, BALCOMBE P, FENG Z X, 2023. Technical and economic analysis of different colours of producing hydrogen in China[J]. Fuel, 337: 127227.
JANSSEN J, WEEDA M, DETZ R J, et al., 2022. Country-specific cost projections for renewable hydrogen production through off-grid electricity systems [J]. Apply Energy, 309: 118398.
KOEBRICH S, 2018. Renewable energy data book acknowledgments[M]. U.S. Department of Energy.
LI S Y, QIAO C Y, LI Z M, et al., 2018. The effect of permeability on supercritical CO2 diffusion coefficient and determination of diffusive tortuosity of porous media under reservoir conditions[J]. Journal of CO2 Utilization, 28: 1-14.
LIU J, XU Z, WU J, et al., 2021. Optimal planning of distributed hydrogen-based multi-energy systems[J]. Applied Energy, 281: 116107.
LU H, MA X, HUANG K, et al., 2020. Carbon trading volume and price forecasting in China using multiple machine learning models[J]. Journal of Cleaner Production, 249: 119386.
MIAO B, GIORDANO L, CHAN S H, 2021. Long-distance renewable hydrogen transmission via cables and pipelines[J]. International Journal of Hydrogen Energy, 46(36): 18699-18718.
MUZAFFAR A, AHAMED M B, DESHMUKH K, et al., 2019. A review on recent advances in hybrid supercapacitors: design, fabrication and applications[J]. Renewable & Sustainable Energy Reviews, 101: 123-145.
NING B, ZHANG X, LIU X, et al., 2022. Allocation of carbon quotas with local differential privacy[J]. Applied Energy, 326: 119974.
PAN G S, GU W, CHEN S, et al., 2021a. Investment equilibrium of an integrated multi-stakeholder electricity-gas-hydrogen system[J]. Renewable & Sustainable Energy Reviews, 150: 111407.
PAN G S, GU W, HU Q R, et al., 2021b. Cost and low-carbon competitiveness of electrolytic hydrogen in China[J]. Energy & Environmental Science, 14(9): 4868-4881.
PARRA D, VALVERDE L, PINO F J, et al., 2019. A review on the role, cost and value of hydrogen energy systems for deep decarbonization[J]. Renewable & Sustainable Energy Reviews, 101: 279-294.
PETKOV I, GABRIELLI P, 2020. Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems[J]. Apply Energy, 274: 115197.
QI S Z, CHENG S H, TAN X J, et al., 2022. Predicting China's carbon price based on a multi-scale integrated model[J]. Apply Energy, 324: 119784.
QUARTON C J, TLILI O, WELDER L, et al., 2020. The curious case of the conflicting roles of hydrogen in global energy scenarios[J]. Sustain Energy & Fuels, 4(1): 80-95.
RAD M A V, GHASEMPOUR R, RAHDAN P, et al., 2020. Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran[J]. Energy, 190: 116421.
REN J Y, LI Y, WANG Q S, et al., 2023. Research on the construction model of hydrogen-electric integrated energy stations in typical climate regions of China [J]. Journal of Physics: Conference Series, 2495: 012028.
RUHNAU O, 2022. How flexible electricity demand stabilizes wind and solar market values: the case of hydrogen electrolyzers[J]. Apply Energy, 307: 118194.
SCHMIDT O, MELCHIOR S, HAWKES A, et al., 2019. Projecting the future levelized cost of electricity storage technologies[J]. Joule, 3: 81-100.
WANG B, LI Z X, ZHOU J X, et al., 2023. Technological-economic assessment and optimization of hydrogen-based transportation systems in China: a life cycle perspective[J]. International Journal of Hydrogen Energy, 48(33): 12155-12167.
|