艾信, 田鹏, 吉效科, 等, 2021. 多算法融合管道泄漏检测预警系统试验研究[J]. 石油矿场机械, 50(6): 26-33.〔AI X, TIAN P, JI X K, et al.,2021. Experimental study on multi-algorithm fusion pipeline leakage detection and early warning system[J]. Oil Field Machinery, 50(6): 26-33.〕
白新建,梁姝婷,万莉, 2018. FPSO生活模块海工装备市场经济预测研究[J]. 中国修船, 31(6): 45-48.〔BAI X J, LIANG S T, WAN L, 2018. Research on market economy prediction of FPSO life module marine equipment[J]. China Shipbuilding, 31(6): 45-48.〕
班文静,姜强,赵蔚,2022. 基于多算法融合的在线学习成绩精准预测研究[J]. 现代远距离教育(03): 37-45.〔BAN W J, JIANG Q, ZHAO W, 2022. Accurate prediction of online academic performance based on multi-algorithm fusion[J]. Modern Distance Education(03): 37-45.〕
陈华友, 2008.组合预测方法有效性理论及其应用[M]. 北京: 科学出版社.〔CHEN H Y, 2008. Validity theory and application of combination forecasting methods[M]. Beijing: Science Press.〕
戴家刚, 2007. 住房公积金中沉淀资金预测模型的研究与实现[D]. 北京: 清华大学.〔DAI J G, 2007. Research and implementation of precipitation fund prediction model in housing provident fund[D]. Beijing: Tsinghua University.〕
杜庆贵,沈晓婵,檀国荣,等,2017. FPSO应用现状及发展趋势浅析[J]. 海洋工程装备与技术, 4(2): 63-68.〔DU Q G, SHEN X C, TAN G R, et al.,2017. Analysis of application status and development trend of FPSO[J]. Ocean engineering equipment and technology, 4(2): 63-68.〕
冯明刚, 严伟, 葛新民, 等, 2018. 利用随机森林回归算法预测总有机碳含量[J]. 矿物岩石地球化学通报, 37(03): 475-481.〔F ENG M G, YAN W, GE X M, et al.,2018. Total organic carbon content was predicted using random forest regression algorithm[J]. Geochemical Bulletin of Minerals and Rocks, 37(03): 475-481.〕
黄吉, 姜晓翔, 甘霏斐, 2021. FPSO国内外发展及市场展望[J]. 船舶工程, 43(12): 29-36.〔HUANG J, JIANG X X, GAN F F, 2021. FPSO development and market outlook at home and abroad[J]. Ship Engineering, 43(12): 29-36.〕
纪绘,李玥,王开翔,2023. 基于多算法融合与人文特征的兰州市PM_(2.5)等级预测方法[J]. 软件导刊, 22(8): 24-32.〔JI H, LI Y, WANG K X, 2023. PM _ (2.5) grade prediction method of Lanzhou city based on multi-algorithm fusion and humanistic characteristics[J]. Software Guide, 22(8): 24-32.〕
李红卫,1992. FPSO系统90年代的市场预测[J]. 中国海洋平台 (2): 90.〔LI H W, 1992. Market forecast of FPSO system in 1990s[J]. China Offshore Platform (2) : 90.〕
李宁, 2020. 基于BP神经网络和果蝇算法的FPSO船体梁结构参数优化研究[D]. 青岛: 中国石油大学(华东).〔LI N, 2020. Optimization of structural parameters of FPSO hull girder based on BP neural network and fruit fly algorithm[D]. Qingdao: China University of Petroleum (East China).〕
李伟, 严珂, 陆慧娟, 等, 2019. 基于Adaboost.RT算法的隧道沉降时间序列预测研究[J]. 中国计量大学学报, 30(3): 331-336.〔LI W, YAN K, LU H J, et al.,2019. Prediction of tunnel settlement time series based on Adaboost.RT algorithm[J]. Journal of China Jiliang University, 30(3): 331-336.〕
李文彬, 张春梅, 2017. 多算法融合的电网用电量预测系统研究和实现[J]. 现代计算机(专业版), 22: 75-78.〔LI W B, ZHANG C M, 2017. Research and implementation of power grid electricity consumption prediction system based on multi-algorithm fusion[J]. Modern Computer (Professional Edition), 22: 75-78.〕
芦琳娜, 胡平樱, 雷涯邻, 2016. 2020年、2025年、2030年我国镍资源供需量熵值组合预测[J]. 中国矿业, 25(6): 38-43.〔LU L N, HU P Y, LEI Y L, 2016. 2020,2025,2030 China’s nickel resources supply and demand entropy combination forecast[J]. China Mining, 25(6): 38-43.〕
罗宇卓, 马瑜, 王文娜, 等, 2018. 基于FPSO优化的BP神经网络算法及环境监测应用[J]. 国外电子测量技术, 37(3): 136-142.〔LUO Y Z, MA Y, WANG W N, et al.,2018. BP neural network algorithm based on FPSO optimization and environmental monitoring applications[J]. Foreign Electronic Measurement Technology, 37(3): 136-142.〕
吕佳朋, 史贤俊, 2020. 基于AdaBoost的GPR预测算法研究及应用[J]. 电光与控制, 27(6): 43-46, 62.〔LU J P, SHI X J, 2020. Research and application of GPR prediction algorithm based on AdaBoost[J]. Electro-optics and control, 27(6): 43-46, 62.〕
吕龙德, 2023. 需求增长FPSO掀制造小高潮[J]. 广东造船, 42(5): 15-16.〔LU L D, 2023. Demand growth FPSO tilting manufacturing small climax[J]. Guangdong Shipbuilding, 42 (5): 15-16.〕
孙仪阳, 2017. 基于熵值法和数学预测模型的土地生态安全动态评价[D]. 泰安: 山东农业大学.〔SUN Y Y, 2017. Dynamic evaluation of land ecological security based on entropy method and mathematical prediction model[D]. Taian: Shandong Agricultural University.〕
谭家翔, 2016. 深水FPSO发展现状与趋势[J]. 船海工程, 45(5): 65-69, 75.〔TAN J X, 2016. Development status and trends of deepwater FPSO[J]. Ship-Ocean Engineering, 45(5): 65-69,75.〕
王祺, 2022. 基于FPSO的深水油田开发模式最优化算法研究[D]. 北京: 中国石油大学(北京).〔WANG Q, 2022. Research on optimization algorithm of deepwater oilfield development mode based on FPSO[D]. Beijing: China University of Petroleum (Beijing).〕
王荣波, 王亚杰, 黄孝喜, 等, 2018. 基于多算法融合的移动通信客户流失预测模型[J]. 计算机技术与发展, 28(8): 152-155, 159.〔WANG R B, WANG Y J, HUANG X X, et al.,2018. Mobile communication customer churn prediction model based on multi-algorithm fusion[J]. Computer Technology and Development, 28(8): 152-155, 159.〕
王天佐, 王常明, 姚爱军, 等, 2016. 基于时间序列的地铁横通道拱顶沉降预测[J]. 现代隧道技术, 53(3): 74-81.〔WANG T Z, WANG C M, YAO A J, et al.,2016. Prediction of vault settlement of subway cross passage based on time series[J]. Modern Tunnel Technology, 53(3): 74-81.〕
吴潇雨, 和敬涵, 张沛, 等, 2015. 基于灰色投影改进随机森林算法的电力系统短期负荷预测[J]. 电力系统自动化, 39(12): 50-55.〔WU X Y, HE J H, ZHANG P, et al.,2015. Short-term load forecasting of power system based on grey projection improved random forest algorithm[J]. Power System Automation, 39(12): 50-55.〕
吴晓阳, 张森, 陈先中, 等, 2020. 高炉煤气流分布过程的多算法融合预测模型[J]. 控制理论与应用, 37(6): 1241-1252.〔WU X Y, ZHANG S, CHEN X Z, et al.,2020. Multi-algorithm fusion prediction model for blast furnace gas flow distribution process[J]. Control Theory and Application, 37(6): 1241-1252.〕
徐煜程, 2017. 基于ARMA模型对我国金融机构存款的分析[J]. 中国集体经济(8): 77-78.〔XU Y C, 2017. Analysis of deposits in China‘s financial institutions based on ARMA model[J]. China’s Collective Economy(8): 77-78.〕
薛瑾艳, 高薇, 王东岳, 2019. FPSO投资项目基准收益率的确定办法[J]. 工程建设与设计(22): 243-245.〔XUE J Y, GAO W, WANG D Y, 2019. Determination method of benchmark yield of FPSO investment project[J]. Engineering Construction and Design (22): 243-245.〕
姚立平,潘中良,2019. 一种多算法融合的人脸识别方法研究[J]. 光电子·激光, 30(9): 960-967.〔YAO L P, PAN Z L, 2019. Research on a multi-algorithm fusion face recognition method[J]. Optoelectronics·Laser, 30(9): 960-967.〕
殷欣, 高峰, 刘泉声, 等, 2022. 面向隧道掘进机可掘性评价的多算法融合优化模型及其工程应用[J]. 岩石力学与工程学报, 41(S1): 2757-2771.〔YIN X, GAO F, LIU Q S, et al.,2022. Multi-algorithm fusion optimization model and its engineering application for tunnel boring machine drivability evaluation[J]. Journal of Rock Mechanics and Engineering, 41(S1): 2757-2771.〕
袁捷, 唐龙, 杜浩, 2015. 机场道面使用性能的动态自回归预测模型[J]. 同济大学学报(自然科学版), 43(3): 399-404.〔YUAN J, TANG L, DU H, 2015. Dynamic autoregressive prediction model of airport pavement performance[J]. Journal of Tongji University (Natural Science Edition), 43(3): 399-404.〕
张晶, 2017. 基于AdaBoost回归树的多目标预测算法[J]. 计算机与现代化(9): 89-95, 105.〔ZHANG J, 2017. Multi-objective prediction algorithm based on AdaBoost regression tree[J]. Computer and Modernization (9): 89-95,105.〕
赵羿羽, 徐晓丽, 郎舒妍, 等, 2018. FPSO生活模块市场需求预测[J]. 中国海洋平台, 33(2): 1-4, 21.〔ZHAO Y Y, XU X L, LANG S Y, et al.,2018. FPSO life module market demand forecast[J]. China Offshore Platform, 33(2): 1-4, 21.〕
郑斌,孙洪霞,王维民, 2020. 基于随机森林回归的汽油研究法辛烷值预测[J]. 石油炼制与化工, 51(12): 69-75.〔ZHENG B, SUN H X, WANG W M, 2020. Random forest regression based octane number prediction of gasoline research method[J]. Petroleum Refining and Chemical Industry, 51(12): 69-75.〕
ANDERSON O D, 1977. The Box-Jenkins approach to time series analysis[J]. RAIRO-Operations Research, 11(1): 3-29.
BARTON C M, 2016. FPSO market shows signs of resiliency[EB/OL]. (2016-08-11)[2024-06-10].https://www.offshore.mag.com/production/article/16754991/fpso-market-shows-signs-of-resiliency.
BATES J M, GRANGER C W J, 1969. The combination of forecasts[J]. Oper Res Soc, 20: 451-468.
BOX G E P, PIERCE D A, 1970. Distribution of residual autocorrelations in autoregressive-integrated moving average time series models[J]. Journal of the American Statistical Association, 65(332): 1509-1526.
BREIMAN L, 2001. Random forests[J]. Machine Learning, 45: 5-32.
BUSARI G A, LIM D H, 2021. Crude oil price prediction: a comparison between AdaBoost-LSTM and AdaBoost-GRU for improving forecasting performance[J]. Computers & Chemical Engineering, 155: 107513.
CHOI B S, 2012. ARMA model identification[M]. Secaucus: Springer Science & Business Media.
DENTON J W, 1995. How good are neural networks for causal forecasting?[J]. The Journal of Business Forecasting, 14(2): 17.
DUGGAL A, MINNEBO J, 2020. The floating production, storage and offloading system-past, present and future[C]. Offshore Technology Conference. Houston: OTC-30514-MS.
FREUND Y, SCHAPIRE R E, 1997. A desicion-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 55(1): 119-139
HENERY D, INGLIS R B, 1995.Prospects and challenges for the FPSO[C]. Offshore Technology Conference. Houston: OTC-7695-MS.
JIANG H, FAN Y, SUN H, et al.,2021. Multi-algorithm fusion pharmaceutical sales forecasting mode[C]. 2nd International Conference on Machine Learning and Computer Application. Shenyang: ICMLCA 2021: 1-5.
JIN Y, JANG B S, 2015. Probabilistic fire risk analysis and structural safety assessment of FPSO topside module[J]. Ocean Engineering, 104: 725-737.
KELKBOOM E J C, ZHOU X, BREEBAART J, et al.,2009. Multi-algorithm fusion with template protection[C]. 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems. Washington DC: IEEE: 1-8.
KULKARNI S S, Sanghai N P, Baishya C, et al.,2024. Random forest regression for radiation pattern prediction of planar metasurface reflector antenna[J]. AEU-International Journal of Electronics and Communications, 174: 155018.
LEE L, CHOWDHURY A, SHUBITA M, 2023. Impact of Paris Agreement on financing strategy: evidence from global FPSO industry[J]. Technological Forecasting Social Change,188: 122266.
LIONG C T, CHUA K H, KUMAR N, et al.,2024. Deterministic prediction of vessel motion in real-time using artificial neural network[J]. Ocean Engineering, 294: 116835.
MONTAGNON C E, 2021. Forecasting by splitting a time series using Singular Value Decomposition then using both ARMA and a Fokker Planck equation[J]. Physica A: Statistical Mechanics and its Applications, 567: 125708.
REDDY A P, VIJAYARAJAN V, 2020. Audio compression with multi-algorithm fusion and its impact in speech emotion recognition[J]. International Journal of Speech Technology, 23(2): 277-285.
ROJAS I, VALENZUELA O, ROJAS F, et al.,2008. Soft-computing techniques and ARMA model for time series prediction[J]. Neurocomputing, 71(4/5/6): 519-537.
SIEBEL N T, MAYBANK S, 2002. Fusion of multiple tracking algorithms for robust people tracking[C] European Conference on Computer Vision, 2353: 373-387.
TANG A, GONG P, LI J, et al.,2022. A state-of-charge estimation method based on multi-algorithm fusion[J]. World Electric Vehicle Journal,13(4):70.
VINOD J, SARKAR K B, 2021. Francis turbine electrohydraulic inlet guide vane control by artificial neural network 2 degree-of-freedom PID controller with actuator fault[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 235(8):1494-1509. |