杜焱, 胡鑫杨, 2022. 我国2030年实现碳达峰路径研究: 基于经济、能源、碳排放系统的SD模型[J]. 资源与产业, 24(5): 19-28.〔DU Y, HU X Y, 2022. An approach China ‘s 2030 carbon peak based on SD
model on economy, energy and carbon emission system[J]. Resources &
Industries, 24(5): 19-28.〕
方时姣, 周倩玲, 2017. 产业结构、能源消费与我国雾霾的时空分布[J]. 学习与实践(11): 49-58. 〔FANG S J, ZHOU Q L, 2017. Industrial structure, energy consumption
and spatial-temporal distribution of haze in China[J]. Study and Practice(11):
49-58.〕
高丹, 孔庚, 麻林巍, 等, 2021. 我国区域能源现状及中长期发展战略重点研究[J]. 中国工程科学, 23(1): 7-14.〔GAO D, KONG G, MA L W, et al, 2021. Energy development status and
developing focus of varied regions in China[J]. Engineering, 23(1): 7-14.〕
侯震梅, 张鹏彦, 周勇, 2022. 基于空间收敛视角的新疆区域经济协调发展的演变特征研究[J].资源与产业, 24(3): 53-62.〔HOU Z M, ZHANG P Y, ZHOU Y, 2022. Evolution of Xinjiang ‘s regional
economic coordinated development from perspective of spatial convergence[J].
Resources & Industries, 24(3): 53- 62.〕
陆佳勤, 甘信华, 2022.江苏省工业碳排放时空分异及减排策略[J]. 资源与产业, 24(4): 150-156.〔LU J Q, GAN X H, 2022. Temporal-spatial differentiation and emission reduction strategy of Jiangsu ‘s
industrial carbon emission[J]. Resources & Industries, 24(4) : 150-156.〕
仟松, 2021. 《完善能源消费强度和总量双控制度方案》发布[J]. 中华纸业, 42(19): 3.
邢春娜, 2019. 中国能源消费空间差异及其影响因素分解[J]. 西部经济管理论坛, 30(1): 71-78.〔XING C N, 2019. Spatial difference of energy consumption and its
influencing factors in China[J]. West Forum on Economy and Management, 30(1):
71-78.〕
徐超, 王云鹏, 黎丽莉, 2018. 中国1998—2012年PM_(2.5)时空分布与能源消耗总量关系研究[J]. 生态科学, 37(1): 108-120.〔XU C, WANG Y P, LI L L, 2018. Study on spatiotemporal distribution
of PM2.5 in China and its relationship to energy consumption based the remote
sensing data from 1998 to 2012[J]. Ecological Science, 37(1): 108-120.〕
赵敏, 储佩佩, 2023. 中国省域农村产业融合水平的空间收敛性与分异特征[J]. 资源与产业, 25(1): 51-66.〔ZHAO M, CHU P P, 2023. Spatial convergence and differentiated
characteristics of China ‘s provincial rural industrial integration level[J]. Resources
& Industries, 25(1): 51-66.〕
赵志成, 柳群义, 2019. 中国能源战略规划研究: 基于能源消费、能源生产和能源结构的预测[J]. 资源与产业, 21(6): 1-8.〔ZHAO Z C, LIU Q Y, 2019. China ‘s energy strategy planning based on
prediction of energy consumption, production and structure[J]. Resources &
Industries, 21(6): 1-8.〕
周彦楠, 何则, 马丽, 等, 2017. 中国能源消费结构地域分布的时空分异及影响因素[J]. 资源科学, 39(12): 2247-2257.〔ZHOU Y N, HE Z, MA L, et al, 2017. Spatial and temporal
differentiation of China ‘s provincial scale energy consumption structure[J].
Resources Science, 39(12):2247-2257.〕
邹韵, 2020. 中国能源结构优化程度及收敛性研究 [J]. 统计与决策, 36(8): 98-101.〔ZOU Y, 2020. Research on optimization degree and convergence of
energy structure in China[J]. Statistics & Decision, 36(8): 98-101.〕
ALATAS S, KARAKAYA E, SARI E, 2021. The
potential of material productivity alongside energy productivity in climate
mitigation: evidence from convergence tests in the EU28[J]. Resources,
Conservation and Recycling, 167: 105322.
BIGERNA S, BOLLINO C A, POLINORI P, 2021.
Convergence in renewable energy sources diffusion worldwide[J]. Journal of
Environmental Management, 292: 112784.
FAN W Y, HAO Y, 2020. An empirical research
on the relationship amongst renewable energy consumption, economic growth and
foreign direct investment in China[J]. Renewable Energy, 146: 598-609.
HUANG J B, XIANG S Q, WU P L, et al, 2022.
How to control China ‘s energy consumption through technological progress:a
spatial heterogeneous investigation[J]. Energy, 238: 121965.
IVANOVSKI K, CHURCHILL S A, SMYTH R, 2018.
A club convergence analysis of per capita energy consumption across Australian
regions and sectors[J]. Energy Economics, 76: 519-531.
PAYNE J E, VIZEK M, LEE J, 2017. Is there
convergence in per capita renewable energy consumption across US states?:
evidence from LM and RALS-LM unit root tests with breaks[J]. Renewable & Sustainable Energy Reviews, 70: 715-728.
PHILLIPS
P C B, SUL D, 2007. Transition modeling and econometric convergence tests[J].
Econometrica, 75(6): 1771-1855. |