陈思宇, 2024. 长三角城市群经济韧性与流通效率协同发展关系分析[J]. 商业经济研究(15): 36-39.
光峰涛, 2020. 中国电力消费的多维度特征研究与需求预测[D].北京: 华北电力大学.〔GUANG F T, 2020. Multi-dimensional analysis of the characteristics and demand prediction of China's electricity consumption[D]. Beijing: North China Electric Power University.〕
李金超, 向思徽, 2023. 基于空间视角的中国电力碳排放驱动因素研究[J]. 生态经济, 39(5): 19-27.〔LI J C, XIANG S H, 2023. Research on driving factors of China's electric power carbon emissions based on patial perspective[J].Ecological Economy, 39(5): 19-27.〕
马勇, 刘盈, 王晓柯, 2024. 长三角地区能源、经济与环境系统协调度发展评价[J]. 生产力研究(8): 1-5.〔MA Y, LIU Y, WANG X K, 2024.Evaluation of the coordinated development of energy, economy, and environmental systems in the Yangtze River Delta region[J]. Productivity Research(8): 1-5.〕
唐运舒, 张梦丽, 2024. 基于“政策工具—康养业态”二维框架的长三角四地康养产业政策文本量化分析[J]. 中国卫生经济, 43(9): 12-17.〔TANG Y S, ZHANG M L, 2024.Quantitative analysis on health care industry policy text of the Yangtze River Delta based on a two dimensional framework of “policy tool-health care industry format”[J]. China Health Economics, 43(9): 12-17.〕
王芷悠, 张鹏飞, 罗芳, 2020. 中国区域贸易中隐含的电力不平等[J]. 中国水运(下半月), 20(4): 26-28.
魏文栋, 张鹏飞, 李佳硕, 2020. 区域电力相关碳排放核算框架的构建和应用[J]. 中国人口·资源与环境, 30(7): 38-46.〔WEI W D, ZHANG P F, LI J S, 2020.The framework of regional electricity-related carbon emissions accounting and its application[J].China Population, Resources and Environment, 30(7): 38-46.〕
徐多, 2021. 山西省隐含能源强度影响因素及隐含能源传递路径分析[D].太原: 太原理工大学.〔XU D, 2021.Analysis of the influencing factors of embodied energy intensity and the transmission path of embodied energy in Shanxi province[D]. Taiyuan: Taiyuan University of Technology.〕
杨红磊, 徐鸥洋, 王金丽, 等, 2015. 基于投入产出法的电力产业前后向关联效应分析[J]. 电力科学与技术学报, 30(4): 113-118.〔YANG H L, XU O Y, WANG J L, et al., 2015. Analysis on forward and backward correlation effects of electricity industry based on the input-output method[J]. Journal of Electric Power Science and Technology, 30(4): 113-118.〕
张彩庆, 2004. 基于需求侧的电价形成机制与电价制定模型[J]. 华东电力(8): 4-6.〔ZHANG C Q, 2004.The formation mechanism of electricity price and price-fixing model based on demand side[J]. East China Electric Power(8): 4-6.〕
张壹帆, 陆岷峰, 2024. 新质生产力与区域经济协调发展: 共生机理与共进路径: 以长三角区域经济发展为例[J]. 湖湘论坛, 37(4): 36-49. 〔ZHANG Y F, LU M F, 2024.New quality productivity and Coordinated development of regional economy: Symbiosis mechanism and co-progress path: a case study of regional economic development in the Yangtze River Delta[J]. Huxiang Forum, 37(4): 36-49.〕
郑靖伟, 2021. 中国水资源消耗空间关联网络及结构路径分析[D]. 大连: 辽宁师范大学.〔ZHENG J W, 2021.Analysis of spatial correlation network and structure path of water resources consumption in China[D]. Dalian: Liaoning Normal University.〕
周崇东, 杨怡静, 张加贝, 2019. 云南省电力产业的经济贡献及产业关联效应分析: 基于2015年云南省投入产出表[J]. 中国市场(16): 58-64. 〔ZHOU C D, YANG Y J, et al., 2019.Analysis of economic contribution and industrial correlation effect of power industry in Yunnan Province: Based on input-output table of Yunnan Province in 2015[J]. China Market(16): 58-64.〕
DE CHALENDAR J A, TAGGART J, BENSON S M, 2019. Tracking emissions in the US electricity system[J].Proceedings of the National Academy of Sciences of the United States of America, 116(51): 25497-25502.
DING Y K, LI Y P, ZHENG H R, et al., 2022a.Identifying critical energywater paths and clusters within the urban agglomeration using machine learning algorithm[J]. Energy, 250: 123880.
DING Y K, LI Y P, ZHENG H R, et al., 2022b. Mapping water, energy and carbon footprints along urban agglomeration supply chains[J]. Earth's Future, 10(4): e2021EF002225.
FENG C Y, QU S, JIN Y, et al., 2019. Uncovering urban food-energy-water nexus based on physical input-output analysis: the case of the Detroit Metropolitan Area[J].Applied Energy, 252: 113422(1-9).
FONTENELLE A, NILSSON E, HIDALGO I, et al., 2022.Temporal understanding of the water-energy nexus: a literature review[J]. Energies, 15(8): 2851.
HONG J K, SHEN Q P, XUE F, 2016.A multi-regional structural path analysis of the energy supply chain in China's construction industry[J]. Energy Policy, 92: 56-68.
HU M M, CHEN S Q, WANG Y F, et al., 2021.Identifying the key sectors for regional energy, water and carbon footprints from production-, consumption- and network-based perspectives[J]. Science of The Total Environment, 764: 142821.
LEONTIEF W, 1970.Environmental repercussions and the economic structure: an input-output approach[J].The Review of Economics and Statistics, 52(3): 262.
LI W B, YANG M Y, LONG R Y, et al., 2021.Assessment of greenhouse gasses and air pollutant emissions embodied in cross-province electricity trade in China[J]. Resources, Conservation and Recycling, 171: 105623.
LIU Y F, HU Y C, SU M R, et al., 2020.Multiregional input-output analysis for energy-water nexus: a case study of Pearl River Delta urban agglomeration[J]. Journal of Cleaner Production, 262: 121255.
NAKANO S, ARAI S, WASHIZU A, 2018.Development and application of an inter-regional input-output table for analysis of a next generation energy system[J]. Renewable and Sustainable Energy Reviews, 82: 2834-2842.
PENG X, TAO X, ZHANG H, et al., 2021.CO2 emissions from the electricity sector during China's economic transition:from the production to the consumption perspective[J].Sustainable Production and Consumption, 27: 1010-1020.
ZHAI M Y, HUANG G H, LIU L R, et al., 2020.Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus[J].Renewable and Sustainable Energy Reviews,118: 109511.
ZHENG H, TOBBEN J, DIETZENBACHER E, et al., 2022.Entropy-based Chinese city-level MRIO table framework[J].Economic Systems Research, 34(4): 519-544.
|