陈华友, 2003. 组合预测权系数确定的一种合作对策方法[J]. 预测(1): 75-77, 32.〔CHEN H Y, 2003. A kind of cooperative games method determining weights of combination forecasting[J]. Forecasting(1): 75-77, 32.〕
邓聚龙, 1982. 灰色控制系统[J]. 华中工学院学报(3): 9-18.〔DENG J L, 1982. The grey control system[J]. Journal of Huazhong Institute of Technology(3): 9-18.〕
何莉, 2019. 甘肃省能源供求预测及清洁能源发展对策研究[D]. 兰州: 兰州大学.〔HE L, 2019. Research on energy supply-demand forecast and clean energy development countermeasure of Gansu province[D]. Lanzhou: Lanzhou University.〕
卢奇秀, 李丽旻, 2022. 国内锂资源保供“有底气”[EB/OL]. (2022-04-08) [2024-09-08].http://www.rmlt.com.cn/2022/0408/644197.shtml.
任敏, 胡彧, 2015. 熵权法和云模型下的物联网鲁棒性评估方法[J]. 自动化仪表, 36(5): 60-63.〔REN M, HU Y, 2015. Evaluation method based on entropy weight and cloud model for robustness of IOT[J]. Process Automation Instrumentation, 36(5): 60-63.〕
孙秀娟, 陆新秀, 刘法胜, 等, 2018. 基于熵权法的交通流组合预测模型研究[J]. 山东科技大学学报(自然科学版), 37(4): 111-117.〔SUN X J, LU X X, LIU F S, et al., 2018. Research on combination prediction model of traffic flow based on entropy weight method[J]. Journal of Shandong University of Science and Technology(Natural Science), 37(4): 111-117.〕
唐小我, 曹长修, 1992. 组合预测方法预测误差平方和上界的几个新结果[J]. 系统管理学报(1): 57-62, 77.〔TANG X W, CAO C X, 1992. Some new results of the upper bound of the sum of squares of combination forecasting error[J]. Journal of Systems &Management(1): 57-62, 77.〕
王翀, 2018. 基于模型组合法的我国能源消费需求趋势预测[J]. 统计与决策, 34(20): 86-89.〔WANG C, 2018. Prediction of China's energy consumption demand trend based on model combination method[J]. Statistics & Decision, 34(20): 86-89.〕
王浩, 黄根红, 陈瑞英, 等, 2022. 全球锂资源供需展望及锂产品价格预测[J]. 中国有色冶金, 51(6): 1-11.〔WANG H, HUANG G H, CHEN R Y, et al., 2022. Supply and demand outlook of lithium resources and price forecast of lithium products[J]. China Nonferrous Metallurgy, 51(6): 1-11.〕
王璐, 沙秀艳, 薛颖, 2016. 改进的GM(1,1)灰色预测模型及其应用[J]. 统计与决策(10): 74-77.〔WANG L, SHA X Y, XUE Y, 2016. Improved GM(1,1)grey prediction model and its application[J]. Statistics & Decision(10): 74-77.〕
王永中, 万军, 陈震, 2023. 能源转型背景下关键矿产博弈与中国供应安全[J]. 国际经济评论(6): 147-176.〔WANG Y Z, WAN J, CHEN Z, 2023. Geopolitical game and China's supply security in critical minerals amid energy restructuring[J]. International Economic Review(6): 147-176.〕
邢佳韵, 彭浩, 张艳飞, 等, 2015. 世界锂资源供需形势展望[J]. 资源科学, 37(5): 988-997.〔XING J Y, PENG H, ZHANG Y F, et al., 2015. Global lithium demand and supply[J]. Resources Science, 37(5): 988-997.〕
虞文宝, 2024. 基于ARIMA模型的黄土高原河谷城市生态足迹动态模拟及测算: 以甘肃省兰州市为例[J]. 资源与产业, 26(1): 133-140.〔YU W B, 2024. Ecological footprint dynamic modelling and measurement of loess plateau valley based on ARIMA model: a case study on Lanzhou city[J]. Resources & Industries, 26(1): 133-140.〕
张泽南, 张照志, 吴晴, 等, 2020. 中国锂矿资源需求预测[J]. 中国矿业, 29(7): 9-15.〔ZHANG Z N, ZHANG Z Z, WU Q, et al., 2020. Chinese lithium mineral resources demand forecast[J]. China Mining Magazine, 29(7): 9-15.〕
赵成柏, 毛春梅, 2012. 基于ARIMA和BP神经网络组合模型的我国碳排放强度预测[J]. 长江流域资源与环境, 21(6): 665-671.〔ZHAO C B, MAO C M, 2012. Forecast of intensity of carbon emission to China based on BP neural network and ARIMA combined model[J]. Resources and Environment in the Yangtze Basin, 21(6): 665-671.〕
郑明贵, 于明, 范秋蓉, 等, 2023. 中国2025—2035年碳酸锂需求预测: 基于灰色关联分析和ARIMA-GM-BP神经网络的组合模型[J]. 地球科学进展, 38(4): 377-387.〔ZHENG M G, YU M, FAN Q R, et al., 2023. China's lithium carbonate demand forecast 2025—2035: a combined model based on grey correlation analysis and the ARIMA-GM-BP neural network[J]. Advances in Earth Science, 38(4): 377-387.〕
周文潇, 詹成, 张周益, 等, 2024. 基于灰色GM-BP神经网络组合模型的中国镍原矿多情景需求预测[J]. 资源与产业, 26(2): 53-66.〔ZHOU W X, ZHAN C, ZHANG Z Y, et al., 2024. Multi-scenario demand prediction of nickel raw ore in China based on grey GM-BP neural network combinatorial model[J]. Resources & Industries, 26(2): 53-66.〕
BATES J M,GRANGER C W J, 1969. The combination of forecasts[J]. Journal of the Operational Research Society, 20(4): 451-468.
CHEN P Y, 2019. On the diversity-based weighting method for risk assessment and decision-making about natural hazards[J]. Entropy, 21(3). doi:10.3390/e21030269.
LIU D H, GAO X Y, AN H Z, et al., 2019. Supply and demand response trends of lithium resources driven by the demand of emerging renewable energy technologies in China[J]. Resources, Conservation and Recycling, 145: 311-321.
NARAYAN P K, SABOORI B, SOLEYMANI A, 2016. Economic growth and carbon emissions[J]. Economic Modelling, 53: 388-397.
ROMANUKE V, 2022. ARIMA model optimal selection for time series forecasting[J]. Maritime Technical Journal, 224(1): 28-40.
TEALAB A, HEFNY H, BADR A, 2018. Withdrawn: forecasting of nonlinear time series using artificial neural network[J]. Future Computing and Informatics Journal, 3(2): 143-151.
WANG Q, LI S Y, LI R R, et al., 2018. Forecasting U.S. shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model[J]. Energy, 160: 378-387.
ZIEMANN S, MULLER D B, SCHEBEK L, et al., 2018. Modeling the potential impact of lithium recycling from EV batteries on lithium demand: a dynamic MFA approach[J]. Resources, Conservation and Recycling, 133: 76-85.
|