Resources & Industries ›› 2025, Vol. 27 ›› Issue (3): 97-114.DOI: 10.13776/j.cnki.resourcesindustries.20250226.001
Previous Articles Next Articles
ZHONG Zewei, ZHANG Rongda, ZHAO Xiaoli
Received:
2024-09-27
Revised:
2024-12-03
Online:
2025-06-20
Published:
2025-06-20
钟泽伟,张荣达,赵晓丽
通讯作者:
赵晓丽,博士、教授,主要从事能源经济、环境管制政策与可持续发展研究。E-mail:email99zxl@vip.sina.com
作者简介:
钟泽伟,博士生,主要从事电力经济研究。E-mail:thisiszzw@163.com
基金资助:
CLC Number:
ZHONG Zewei, ZHANG Rongda, ZHAO Xiaoli. CARBON EMISSION REDUCTION AND ECONOMIC BENEFITS OF PHOTOVOLTAIC STORAGE CHARGING STATIONS IN CONSIDERATION OF GEOGRAPHIC VARIANCE[J]. Resources & Industries, 2025, 27(3): 97-114.
钟泽伟, 张荣达, 赵晓丽. 考虑地区差异的光储充电站碳减排作用及经济效益分析[J]. 资源与产业, 2025, 27(3): 97-114.
曹凌捷, 2017.光储充一体化电站建设关键技术研究[J].电力与能源, 38(6): 746-749, 755.〔CAO L J, 2017. Key technologies in the construction of PV-storage-charging integrated power station[J].Power & Energy,38(6): 746-749,755.〕
陈艳波, 田昊欣, 刘宇翔, 等, 2023.计及电动汽车需求响应的高速公路服务区光储充鲁棒优化配置[J/OL].中国电机工程学报.(2023-11-20)[2024-09-20]. https://doi.org/10.13334/j.0258-8013.pcsee.231850.〔CHEN Y B, TIAN H X, LIU Y X, et al., 2023. Robust optimization configuration of photovoltaic-energy storage-charging integrated system in expressway service area considering demand response of electric vehicles[J/OL].Proceedings of the CSEE.(2023-11-20)[2024-09-20]. https://doi.org/10.13334/j.0258-8013.pcsee.231850.〕
戴睿鹏, 窦晓波, 喻洁, 等, 2024.含光储充的配网虚拟电厂二次调频随机模型预测控制策略[J].电网技术, 48(8): 3228-3237.〔DAI R P, DOU X B, YU J, et al., 2024. Secondary frequency control strategy for photovoltaic-storage-charging distribution-level virtual power plant based on stochastic model predictive control[J].Power System Technology,48(8): 3228-3237.〕
高涵, 张建寰, 赵静波, 等, 2020.基于电动汽车创新技术应用的碳减排潜力分析[J].科技管理研究, 40(19): 230-236.〔GAO H, ZHANG J H, ZHAO J B, et al., 2020. Analysis of carbon emission reduction potential based on application of innovative technologies of electric vehicles[J]. Science and Technology Management Research,40(19): 230-236.〕
高昇宇, 柳志航, 卫志农, 等, 2019.城市智能光储充电塔自适应鲁棒日前优化调度[J].电力系统自动化, 43(20): 39-48.〔GAO S Y, LIU Z H, WEI Z N, et al., 2019. Adaptive robust day-ahead optimal dispatch for urban smart photovoltaic storage and charging tower[J].Automation of Electric Power Systems,43(20): 39-48.〕
葛乐, 陆文涛, 袁晓冬, 等, 2017.基于多维动态规划的柔性光储参与主动配电网优化运行[J].电网技术, 41(10): 3300-3306.〔GE L, LU W T, YUAN X D, et al., 2017. Optimal operation of active distribution network based on photovoltaic and energy-storage system of multi-dimensional dynamic programming[J].Power System Technology,41(10): 3300-3306.〕
郭栋, 张洪浩, 郑春燕, 等, 2016.未来中国汽车类型发展预测及节能减排效益分析[J].系统工程理论与实践, 36(6): 1593-1599.〔GUO D, ZHANG H H, ZHENG C Y, et al., 2016. Analysis of the future development of Chinese auto energy saving and environmental benefits[J].Systems Engineering-Theory & Practice,36(6): 1593-1599.〕
郭剑锋, 张雪美, 曹琪, 等, 2024.电动汽车助力我国能源安全与“碳达峰、碳中和”协同推进[J].中国科学院院刊, 39(2): 397-407.〔GUO J F, ZHANG X M, CAO Q, et al., 2024. Electric vehicles contribute to China's energy security and carbon peaking and carbon neutrality[J].Bulletin of Chinese Academy of Sciences,39(2): 397-407.〕
韩杏宁, 2017.大区电力系统新能源电源规划及储能配置方法研究[D].武汉:华中科技大学.〔HAN X N, 2017. Variable renewable generation expansion planning and energy storage allocation in large-scale power systems[D].Wuhan: Huazhong University of Science and Technology.〕
李建霞, 赵峰, 高锋阳, 2022.基于HOMER和禁忌算法的高速公路光储充一体化电站容量优化[J].电源学报, 20(6): 127-136.〔LI J X, ZHAO F, GAO F Y, 2022. Hierarchical optimization for capacity of PV-integrated EV charging station on expressway based on HOMER and Tabu algorithm[J].Journal of Power Supply,20(6): 127-136.〕
李景丽, 时永凯, 张琳娟, 等, 2021.考虑电动汽车有序充电的光储充电站储能容量优化策略[J].电力系统保护与控制, 49(7): 94-102.〔LI J L, SHI Y K, ZHANG L J, et al., 2021. Optimization strategy for the energy storage capacity of a charging station with photovoltaic and energy storage considering orderly charging of electric vehicles[J].Power System Protection and Control,49(7): 94-102.〕
李濮如, 吴琼, 任洪波, 等, 2023.计及差异化用户偏好的光储充一体化家庭用能系统多目标优化调度[J].科学技术与工程, 23(22): 9492-9501.〔LI P R, WU Q, REN H B, et al., 2023. Multi-objective scheduling optimization of home energy system integrating solar and storage equipment considering different user preferences[J].Science Technology and Engineering,23(22): 9492-9501.〕
梁振锋, 祁芙蓉, 王德意, 等, 2023.考虑应急电源功能的光储充放电站配置方法研究[J].电网技术, 47(8): 3376-3384.〔LIANG Z F, QI F R, WANG D Y, et al., 2023. Configuration of optical storage & charging and discharging power station considering emergency power function[J].Power System Technology,47(8): 3376-3384.〕
刘国明, 于晖, 康凯, 等, 2021.考虑需求响应与碳排放的光储充电站容量配置[J].电力系统及其自动化学报, 33(7): 106-112.〔LIU G M, YU H, KANG K, et al., 2021. Capacity allocation of PV-storage-charging station considering demand response and carbon emissions[J].Proceedings of the CSU-EPSA,33(7): 106-112.〕
刘小寒, 程颖, 王聘玺, 等, 2024. “光储充”一体化公交充电设施两阶段鲁棒选址方法[J].中国公路学报, 37(4): 14-23.〔LIU X H, CHENG Y, WANG P X, et al., 2024. Two-stage robust location approach for solar-powered bus-charging infrastructure integrated with energy storage[J].China Journal of Highway and Transport,37(4): 14-23.〕
罗恒, 严晓, 王钦, 等, 2022.充电场站光储充控制策略[J].储能科学与技术, 11(1): 275-282.〔LUO H, YAN X, WANG Q, et al., 2022. Charging and discharging strategy of battery energy storage in the charging station with the presence of photovoltaic[J].Energy Storage Science and Technology,11(1): 275-282.〕
全慧, 李相俊, 张杨, 等, 2021.快充电站多类型应用方式的并网影响及控制技术综述[J].中国电力, 54(1): 89-95, 103.〔QUAN H, LI X J, ZHANG Y, et al., 2021. A review of grid-connection impact and control technology of FCS multi-type application modes[J].Electric Power,54(1): 89-95,103.〕
宋丽斐, 杨涌文, 陈一, 等, 2023.电动汽车与绿电融合示范实践:园区光储充微电网技术应用示范实践[J].上海节能(3): 269-273.〔SONG L F, YANG Y W, CHEN Y, et al., 2023. Demonstration practice of integration of electric vehicles and green electricity: application demonstration practice of optical storage and charging micro grid technology in park[J].Shanghai Energy Saving(3): 269-273.〕
王守相, 程耀祥, 赵倩宇, 等, 2024.考虑光储协调的配电网多阶段就地-分布式电压控制策略[J].电力自动化设备, 44(1): 1-9.〔WANG S X, CHENG Y X, ZHAO Q Y, et al., 2024. Multi-stage local-distributed voltage control strategy of distribution network considering photovoltaic-energy storage coordination[J].Electric Power Automation Equipment,44(1): 1-9.〕
王文静, 王斯成, 2016.我国分布式光伏发电的现状与展望[J].中国科学院院刊, 31(2): 165-172.〔WANG W J, WANG S C, 2016.Status and prospect of Chinese distributed photovoltaic power generation system[J].Bulletin of Chinese Academy of Sciences,31(2): 165-172.〕
王阳, 刘希喆, 2022.光储充电站经济调度规划与容量配置分析[J].南方电网技术, 16(11): 1-8.〔WANG Y, LIU X Z, 2022. Economic dispatching planning and capacity allocation analysis of photovoltaic-storage charging station[J].Southern Power System Technology,16(11): 1-8.〕
吴凡, 周云, 冯冬涵, 等, 2021.光储充一体化快充站日前运行策略[J].电测与仪表, 58(12): 104-109.〔WU F, ZHOU Y, FENG D H, et al., 2021. Day-ahead scheduling strategy of fast charging station with battery energy storage system and PV[J].Electrical Measurement & Instrumentation,58(12): 104-109.〕
徐婉迪, 罗俊, 范薇薇, 2022.不确定环境下并网型光储微电网的容量规划[J].系统工程理论与实践, 42(4): 981-1000.〔XU W D, LUO J, FAN W W, 2022. Capacity planning of grid-connected PV-and-storage microgrid under uncertainty[J].Systems Engineering-Theory & Practice,42(4): 981-1000.〕
徐尤峰, 梁俊宇, 成贝贝, 等, 2021.面向2030碳达峰的云南省交通行业再电气化分析[J].科技管理研究, 41(20): 233-238.〔XU Y F, LIANG J Y, CHENG B B, et al., 2021. Re-electrification analysis of the transportation industry in Yunnan province for the 2030 carbon peak[J].Science and Technology Management Research,41(20): 233-238.〕
薛贵挺, 汪柳君, 刘哲, 等, 2022.考虑碳排放的光储充一体站日前运行策略[J].电力系统保护与控制, 50(7): 103-110.〔XUE G T, WANG L J, LIU Z, et al., 2022. Day-ahead operation strategy of an integrated photovoltaic storage and charging station considering carbon emissions[J].Power System Protection and Control,50(7): 103-110.〕
杨健维, 李爱, 廖凯, 2020.城际高速路网中光储充电站的定容规划[J].电网技术, 44(3): 934-943.〔YANG J W, LI A, LIAO K, 2020. Capacity planning of light storage charging station for intercity highways based on charging guidance[J].Power System Technology,44(3): 934-943.〕
杨楠, 梁金正, 丁力, 等, 2023.考虑改造扩建和安全效能成本的光储一体化充电站规划方法[J].电网技术, 47(9): 3557-3567, s1.〔YANG N, LIANG J Z, DING L, 2023. Integrated optical storage charging considering reconstruction expansion and safety efficiency cost[J].Power System Technology,47(9): 3557-3569,s1.〕
张翀, 张嘉楠, 杨伟涛, 等, 2023.光储充多站合一能量管理系统设计[J].电气技术与经济(3): 125-128.
张荣达, 赵晓丽, 张庆斌, 等, 2024.基于风光发电的中国各省绿氢替代灰氢经济性研究:基于精细地理网格分析[J].资源与产业, 26(3): 134-146.〔ZHANG R D, ZHAO X L, ZHANG Q B, et al.,2024. Economic feasibility of green hydrogen replacing gray hydrogen in China's provinces based on wind and photovoltaic power generation: based on detailed geographic grid analysis[J].Resources & Industries,26(3): 134-146.〕
张岩, 韩伟, 宋闯, 等, 2022.含电动汽车的光储充一体化电站设施规划与运行联合优化[J].储能科学与技术, 11(5): 1502-1511.〔ZHANG Y, HAN W, SONG C, et al., 2022. Joint planning and operation optimization of photovoltaic-storage-charging integrated station containing electric vehicles[J].Energy Storage Science and Technology, 11(5): 1502-1511.〕
中华人民共和国生态环境部, 2020. 2019年度减排项目中国区域电网基准线排放因子[EB/OL]. (2020-12-29)[2024-03-16].https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/202012/t20201229_815386.shtml.
朱明, 季金华, 金盛, 等, 2024.电动汽车与清洁能源融合发展技术研究与展望[J].汽车安全与节能学报, 15(1): 1-19.〔ZHU M, JI J H, JIN S, et al., 2024. A state-of-the-art review on the integrated development technology of electric vehicles and clean energy[J].Journal of Automotive Safety and Energy,15(1): 1-19.〕
CHU Y, CUI H, HE H, 2023. Nine trends in the development of China's electric passenger car market[EB/OL].(2023-03-24)[2024-03-16].https://theicct.org/publication/passenger-cars-china-trends-market-mar23/.
ELDEEB H H, FADDEL S, MOHAMMED O A, 2018. Multi-objective optimization technique for the operation of grid tied PV powered EV charging station[J]. Electric Power Systems Research,164:201-211.
FIGUEIREDO R, NUNES P, BRITO M C, 2017. The feasibility of solar parking lots for electric vehicles[J]. Energy, 140: 1182-1197.
INTERNATIONAL ENERGY AGENCY, 2024. Global EV outlook 2024[R]. Paris: International Energy Agency.
INTERNATIONAL RENEWABLE ENERGY AGENCY, 2023. Renewable power generation costs in 2022[R]. Abu Dhabi: International Renewable Energy Agency.
INTERNATIONAL RENEWABLE ENERGY AGENCY, 2024. Renewable energy technologies[EB/OL]. [2024-03-03].https://www.irena.org/Data/View-data-by.topic/Capacity-and-Generation/Technologies.
KOSTOPOULOS E D, SPYROPOULOS G C, KALDELLIS J K, 2020.Real-world study for the optimal charging of electric vehicles[J].Energy Reports, 6: 418-426.
LI D, LV M S, YANG J Y, et al., 2020.Optimizing the locations and sizes of solar assisted electric vehicle charging stations in an urban area[J]. IEEE Access, 8: 112772-112782.
MARION B, KROPOSKI B, EMERY K, et al., 1999. Validation of a photovoltaic module energy ratings procedure at NREL: NREL/TP-520-26909[R]. Golden: National Renewable Energy Lab.
MURATORI M, ELGQVIST E, CUTLER D, et al., 2019. Technology solutions to mitigate electricity cost for electric vehicle DC fast charging[J]. Applied Energy, 242: 415-423.
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, 2022. MERRA-2[DS/OL]. (2022-09-09)[2024-01-18]. https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.
NATIONAL RENEWABLE ENERGY LABORATORY, 2022. 2022 Annual technology baseline[DS/OL]. (2022-06-10)[2024-01-18]. https://atb.nrel.gov/electricity/2022/about.
NORDHAUS W D, 2017. Revisiting the social cost of carbon[J]. Proceedings of the National Academy of Sciences of the United States of America, 114(7): 1518-1523.
QIAO Q Y, ZHAO F Q, LIU Z W, et al., 2019. Life cycle greenhouse gas emissions of electric vehicles in China: combining the vehicle cycle and fuel cycle[J]. Energy, 177: 222-233.
QIAO Q Y, ZHAO F Q, LIU Z W, et al., 2020. Life cycle cost and GHG emission benefits of electric vehicles in China[J]. Transportation Research Part D (Transport and Environment), 86: 102418.
SCHRODER A, KUNZ F, MEISS J, et al., 2013. Current and prospective costs of electricity generation until 2050: DIW data documentation 68[R]. Berlin: German Institute for Economic Research.
SHEN W, HAN W J, WALLINGTON T J, et al., 2019. China electricity generation greenhouse gas emission intensity in 2030: implications for electric vehicles[J]. Environmental Science & Technology, 53(10): 6063-6072.
SUN C Y, ZHAO X L, QI B B, et al., 2022. Economic and environmental analysis of coupled PV-energy storage-charging station considering location and scale[J]. Applied Energy, 328: 119680.
THOMAS D, DEBLECKER O, IOAKIMIDIS C S, 2018. Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics' uncertainty and stochastic electric vehicles' driving schedule[J]. Applied Energy, 210: 1188-1206.
WU Z X, WANG M, ZHENG J H, et al., 2018. Life cycle greenhouse gas emission reduction potential of battery electric vehicle[J]. Journal of Cleaner Production, 190: 462-470.
YAN Q, ZHANG B, KEZUNOVIC M, 2019. Optimized operational cost reduction for an EV charging station integrated with battery energy storage and PV generation[J]. IEEE Transactions on Smart Grid, 10(2): 2096-2106.
|
[1] |
PAN Haiying, CHEN Ling, REN Jiajia.
CARBON EMISSION REDUCTION EFFECTS OF DIGITAL ECONOMIC DEVELOPMENT WITH ADJUSTMENT OF HETEROGENEOUS ENVIRONMENTAL REGULATION [J]. Resources & Industries, 2023, 25(6): 1-14. |
[2] | JIAN Xiaobin, CHEN Weibo, ZHAO Jie. CARBON EMISSION EFFECT, FACTORS AND EMISSION REDUCTION POTENTIAL OF INDUSTRIAL DEVELOPMENT IN UNDERDEVELOPED REGIONS: A CASE STUDY ON NORTHERN JIANGSU PROVINCE [J]. Resources & Industries, 2021, 23(1): 35-45. |
[3] | WU Jin, CUI Yalei, SUN Renjin. ECONOMIC BENEFITS ASSESSMENT ON GAS-HEATING-ELECTRICITY UNITED PROJECTS [J]. Resources & Industries, 2019, 21(2): 95-103. |
[4] | ZHOU Yanchun, GONG Lei. COST BENEFITS EVALUATION OF BLOCKS IN A LARGE OIL FIELD BASED ON AHP AND CLUSTERING [J]. Resources & Industries, 2015, 17(4): 117-122. |
[5] | WANG Li-li WANG An-jian WANG Gao-shang. STUDY ON CARBON EMISSIONS OF GLOBAL ENERGY CONSUMPTION [J]. Resources & Industries, 2009, 11(4): 6-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||