贺勇, 傅飞飞, 廖诺, 2021. 基于STIRPAT模型的工业研发投入对碳排放影响效应分析[J]. 科技管理研究, 41(17): 206-212.〔HE Y, FU F F, LIAO N, 2021. Effect analysis of industrial R&D investment on carbon emission based on STIRPAT model[J]. Research on Science and Technology Management, 41(17): 206-212.〕
洪竞科, 李沅潮, 蔡伟光, 2021. 多情景视角下的中国碳达峰路径模拟: 基于RICE-LEAP模型[J]. 资源科学, 43(4): 639-651.〔HONG J K, LI Y C, CAI W G, 2021. Simulation of Chinas carbon peak path from the perspective of multiple scenarios: based on RICE-LEAP model[J]. Resource science, 43(4): 639-651.〕
胡晓伟, 包家烁, 安实, 等, 2021. 碳达峰下城市交通运输减排治理策略研究[J]. 交通运输系统工程与信息, 21(6): 244-256.〔HU X W, BAO J S, AN S, et al, 2021. Study on the emission reduction governance strategy of urban transportation under carbon peak[J]. Transportation System Engineering and Information, 21(6): 244-256.〕
胡振, 龚薛, 刘华, 2020. 基于BP模型的西部城市家庭消费碳排放预测研究: 以西安市为例[J]. 干旱区资源与环境, 34(7): 82-89.〔HU Z, GONG X, LIU H, 2020. Study on the prediction of household consumption carbon emissions in western cities based on BP model: a case study of Xian City[J]. Resources and Environment in Arid Areas, 34(7): 82-89.〕
简晓彬, 陈伟博, 赵洁, 2021. 欠发达地区工业发展的碳排放效应、影响因素及减排潜力: 以苏北为例[J]. 资源与产业, 23(1): 35-45.〔JIAN X B, CHEN W B, ZHAO J, 2021. Carbon emission effect, influencing factors and emission reduction potential of industrial development in underdeveloped regions: a case study of northern Jiangsu[J]. Resources and Industries, 23(1): 35-45.〕
李艳红, 2020. 基于STIRPAT模型的财政分权对碳排放的影响测度[J]. 统计与决策, 36(18): 136-140.〔LI Y H, 2020. Impact measurement of fiscal decentralization on carbon emissions based on STIRPAT model[J]. Statistics and Decision, 36(18): 136-140.〕
刘菁, 赵静云, 2018. 基于系统动力学的建筑碳排放预测研究[J]. 科技管理研究, 38(9): 219-226.〔LIU Q, ZHAO J Y, 2018, Research on building carbon emission prediction based on system dynamics[J]. Research on Science and Technology Management, 38(9): 219-226.〕
史宝娟, 郑亚男, 郑祖婷, 等, 2017. 基于系统动力学的资源型城市低碳发展路径研究[J]. 华北理工大学学报(社会科学版), 17(5): 51-58.〔SHI B J, ZHENG Y N, ZHENG Z T, et al, 2017, Research on lowcarbon development path of resourcebased cities based on system dynamics[J]. Journal of North China University of Technology (Social Science Edition), 17(5): 51-58.〕
孙晓奇, 施青, 2022. 基于投入产出模型的钢铁去产能政策的节能减排效应分析[J]. 资源与产业, 24(4): 1-8.〔SUN X Q, SHI Q, 2021. Analysis of energy saving and emission reduction effect of iron and steel de capacity policy based on inputoutput model[J]. Resources and Industries, 24(4): 1-8.〕
田泽, 肖芊芊, 陈柯婧, 等, 2022. 绿色创新背景下长三角地区生态效率时空差异及影响因素研究[J]. 资源与产业, 24(2): 42-53.〔TIAN Z, XIAO Q Q, CHEN K J, et al, 2022. Study on spatiotemporal differences and influencing factors of ecological efficiency in Yangtze River Delta under the background of green innovation[J]. Resources and Industries, 24(2): 42-53.〕
王勇, 许子易, 张亚新, 2019. 中国超大城市碳排放达峰的影响因素及组合情景预测: 基于门限-STIRPAT模型的研究[J]. 环境科学学报, 39(12): 4284-4292.〔WANG Y, XU Z Y, ZHANG Y X, 2019. Influential factors and combined scenario prediction of carbon emission peaking in megacities in China: a study based on threshold STIRPAT model[J]. Journal of Environmental Science, 39(12): 4284-4292.〕
汪中华, 于孟君, 2019. 中国石化行业二氧化碳排放的影响因素分解: 基于广义迪氏指数分解法[J]. 科技管理研究, 39(24): 268-274.〔WANG Z H, YU M J, 2019. Decomposition of influential factors of carbon dioxide emission in China's petrochemical industry: based on the generalized Di's index decomposition method[J]. Research on Science and Technology Management, 39(24): 268-274.〕
闫凤英, 刘思娴, 张小平, 2021. 基于PCABP神经网络的用地碳排放预测研究[J]. 西部人居环境学刊, 36(6): 1-7.〔YAN F Y, LIU S X, ZHANG X P, 2021. Prediction of land carbon emission based on PCA-BP neural network[J]. Western Journal of Human Settlements, 36(6): 1-7.〕
张迪, 王彤彤, 支金虎, 2022. 基于IPSOBP神经网络模型的山东省碳排放预测及生态经济分析[J]. 生态科学, 41(1): 149-158.〔ZHANG D, WANG T T, ZHI J H, 2022. Prediction of carbon emission and ecological economic analysis in Shandong province based on IPSO-BP neural network model[J]. Ecological Science, 41(1): 149-158.〕
张帆, 徐宁, 吴锋, 2021. 共享社会经济路径下中国2020—2100年碳排放预测研究[J/OL]. 生态学报(24): 1-14.〔ZHANG F, XU N, WU F, 2021. Research on China's 2020—2100 carbon emission forecast under the path of sharing social economy[J/OL]. Journal of Ecology (24): 1-14.〕
中华人民共和国国务院新闻办公室, 2021. 中国应对气候变化的政策与行动[R/OL]. (2021-10-27)[2021-11-03]. http: //www. gov. cn/xinwen/2021-10/27/content_5646697. htm.〔INFORMATION OFFICE OF THE STATE COUNCIL OF THE PEOPLE'S REPUBLIC OF CHINA, 2021. China's policies and actions to address climate change[R/OL]. (2021-10-27)[2021-11-03]. http: //www. gov. cn/xinwen/2021-10/27/content_5646697. htm.〕
HUO T, MA Y, CAI W, et al, 2020. Will the urbanization process influence the peak of carbon emissions in the building sector?: a dynamic scenario simulation[J]. Energy and Buildings, 232: 110590.
QI Y, STERN N, HE J, et al, 2020. The policy-driven peak and reduction of Chinas carbonemssions[J]. Advances in Climate Change Research, 11(2): 65-7.
TAO Y, WEN Z, XU L, et al, 2019. Technology options: can Chinese power industry reach the CO2 emission peak before 2030?[J]. Resources, Conservation and Recycling, 147: 85-94.
WANG H, OU X, ZHANG X, 2017. Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050[J]. Energy Policy, 109: 719-733.
WANG S, ZHOU C, LI G, et al, 2016. CO2, economic growth, and energy consumption in China's provinces: investigating the spatiotemporal and econometric characteristics of China's CO2 emissions[J]. Ecological Indicators, 69: 184-195.
XU G, SCHWARZ P, YANG H, 2020. Adjusting energy consumption structure to achieve China's CO2 emissions peak[J]. Renewable and Sustainable Energy Reviews, 122: 109737.
ZHANG Y, LIU C, CHEN L, et al, 2019. Energy-related CO2 emission peaking target and pathways for Chinas city: a case study of Baoding City[J]. Journal of Cleaner Production, 226: 471-481.
|