陈涛, 李晓阳, 陈斌, 2022. 中国碳排放影响因素分解及峰值预测研究[J/OL].安全与环境学报,[2022-12-28](2023-11-10)
https://doi.org/10.13637/j.issn.1009-6094.2022.1448.
董莹, 许宝荣, 华中, 等, 2020. 基于LMDI的甘肃省碳排放影响因素分解研究[J]. 兰州大学学报(自然科学版), 56(5): 606-614.〔DONG Y, XU B R, HUA Z, et al., 2020. Factor decomposition of carbon
emission in Gansu province based on LMDI[J]. Journal of Lanzhou
University(Natural Sciences), 56(5): 606-614.〕
方琦, 钱立华, 鲁政委, 2021. 我国实现碳达峰与碳中和的碳排放量测算[J]. 环境保护, 49(16): 49-54.〔FANG Q, QIAN L H, LU Z W, 2021. Measure carbon emission amount of
China in the context of carbon peak and carbon neutrality[J]. Environmental
Protection, 49(16): 49-54.〕
高新伟, 朱源, 2020. 科研投入抑制碳排放了吗?: 基于LMDI模型和STIRPAT模型的碳排放影响因素分析[J]. 资源与产业, 22(6): 37-45.〔GAO X W, ZHU Y, 2020. Do research inputs constrain carbon emission
from carbon emission factors based on LMDI model and STIRPAT model?[J].
Resources & Industries, 22(6): 37-45.〕
纪建悦, 姜兴坤, 2012. 我国建筑业碳排放预测研究[J]. 中国海洋大学学报(社会科学版), 118(1): 53-57.〔JI J Y, JIANG X K, 2012. Carbon emissions prediction study in China’s
construction industry[J]. Journal of Ocean University of China(Social
Sciences), 118(1): 53-57.〕
蒋昀辰, 钟苏娟, 王逸, 等, 2022. 全国各省域碳达峰时空特征及影响因素[J]. 自然资源学报, 37(5): 1289-1302.〔JIANG Y C, ZHONG S J, WANG Y, et al., 2022. Spatio-temporal
characteristics and influencing factors of carbon emission peak by province of
China[J]. Journal of Natural Resources, 37(5): 1289-1302.〕
兰延文, 郭丽君, 李森, 2021. 碳排放驱动因素分解及碳排放达峰情景分析:以河南省为例[J]. 能源与环境(6): 7-11.
李江元, 丁涛, 2020. 我国碳排放增长的驱动因素分解:基于LMDI模型[J]. 煤炭经济研究, 40(6): 47-56.〔LI J Y, DING T, 2020. Driving
factors for the growth of China’s carbon emissions based on LMDI model[J]. Coal
Economic Research, 40(6): 47-56.〕
李心萍, 苏时鹏, 张雅珊, 等, 2023. 福建省碳排放预测与碳达峰路径分析[J]. 资源开发与市场, 39(2): 139-147.〔LI X P, SU S P, ZHANG Y S, et al., 2023. Carbon emission prediction
and carbon peak path analysis in Fujian province[J]. Resource Development &
Market, 39(2): 139-147.〕
林伯强, 蒋竺均, 2009. 中国二氧化碳的环境库兹涅茨曲线预测及影响因素分析[J]. 管理世界(4): 27-36.
刘淳森, 曲建升, 葛钰洁, 等, 2023. 基于LSTM模型的中国交通运输业碳排放预测[J]. 中国环境科学, 43(5): 2574-2582.〔LIU C S, QU J S, GE Y J, et al.,
2023. LSTM model-based prediction of carbon emissions from China’s
transportation sector[J]. China Environmental Science, 43(5): 2574-2582.〕
鲁万波, 仇婷婷, 杜磊, 2013. 中国不同经济增长阶段碳排放影响因素研究[J]. 经济研究, 48(4): 106-118.〔LU W B, QIU T T, DU L, 2013. A study on influence factors of carbon
emissions under different economic growth stages in China[J]. Economic Research
Journal, 48(4): 106-118.〕
渠慎宁, 郭朝先, 2010. 基于STIRPAT模型的中国碳排放峰值预测研究[J]. 中国人口·资源与环境, 20(12): 10-15.〔QU S N, GUO C X, 2010. Forecast of China’s carbon emissions based on
STIRPAT model[J]. China Population,
Resources and Environment, 20(12): 10-15.〕
宋府霖, 韩传峰, 滕敏敏, 2022. 长三角地区能源消费碳排放驱动因素分析及优化策略[J]. 生态经济, 38(4): 21-28.〔SONG F L, HAN C F, TENG M M, 2022. Analysis of driving factors and
optimization strategies of energy consumption carbon emissions in the Yangtze
River delta[J]. Ecological Economy, 38(4): 21-28.〕
孙蒙, 李长云, 邢振方, 等, 2023. 碳中和目标下中国碳排放关键影响因素分析及情景预测[J]. 高电压技术, 49(9): 4011-4021.〔SUN M, LI C Y, XING Z F, et al., 2023. Analysis of key influencing
factors and scenario prediction of China’s carbon emission under carbon
neutrality[J]. High Voltage Engineering: 49(9): 4011-4021.〕
唐志鹏, 于浩杰, 陈明星, 等, 2022. 基于函数极值条件下的中国碳达峰碳中和情景分析[J]. 自然资源学报, 37(5): 1247-1260.〔TANG Z P, YU H J, CHEN M X, et al., 2022. The scenario analysis of
China’s carbon emission peak and carbon neutrality based on extremum condition
of function[J]. Journal of Natural Resources, 37(5): 1247-1260.〕
田泽, 张宏阳, 纽文婕, 2021. 长江经济带碳排放峰值预测与减排策略[J]. 资源与产业, 23(1): 97-105.〔TIAN Z, ZHANG H Y, NIU W J, 2021. Peak prediction and reduction
strategy of carbon emission in Yangtze River economic zone[J]. Resources &
Industries, 23(1): 97-105.〕
王大会, 李泰君, 2023. 贵州省碳达峰现状与路径分析[J]. 中国资源综合利用, 41(1): 185-187.〔WANG D H, LI T J, 2023. Analysis on the status and path of carbon
peak in Guizhou province[J]. China Resources Comprehensive Utilization, 41(1):
185-187.〕
王丽萍, 刘明浩, 2018. 基于投入产出法的中国物流业碳排放测算及影响因素研究[J]. 资源科学, 40(1): 195-206.〔WANG L P, LIU M H, 2018. Carbon emission measurement for China’s
logistics industry and its influence factors based on input-output method[J].
Resources Science, 40(1): 195-206.〕
王利兵, 张赟, 2021. 中国能源碳排放因素分解与情景预测[J]. 电力建设, 42(9): 1-9.〔WANG L B, ZHANG Y, 2021. Factors decomposition and scenario
prediction of energy-related CO2 emissions in China[J]. Electric Power Construction, 42(9): 1-9.〕
王利军, 庞雅倩, 陈梦冬, 2022. 湖北省交通业碳排放影响因素及情景预测[J]. 资源与产业, 24(3): 106-113.〔WANG L J, PANG Y Q, CHEN M D, 2022. Carbon emission factors and
scenario forecast of Hubei’s transportation industry[J]. Resources &
Industries, 24(3): 106-113.〕
王梦凯, 白艳萍, 2022. 基于LMDI模型的江苏省碳排放强度影响因素分解研究[J]. 宁夏大学学报(自然科学版), 43(1): 109-114.〔WANG M K, BAI Y P, 2022. Decomposition of factors affecting carbon
emission intensity in Jiangsu province based on LMDI model[J]. Journal of
Ningxia University(Natural Science Edition), 43(1): 109-114.〕
王韶华, 赵暘春, 张伟, 等, 2022. 京津冀碳排放的影响因素分析及达峰情景预测:基于供给侧改革视角[J]. 北京理工大学学报(社会科学版), 24(6): 54-66.〔WANG S H, ZHAO Y C, ZHANG W, et al., 2022. Analysis on influencing
factors of carbon emission and scenario forecast of carbon peak in Beijing-Tianjin-Hebei:
a perspective of supply-side reform[J]. Journal of Beijing Institute of
Technology(Social Sciences Edition), 24(6): 54-66.〕
王勇, 毕莹, 王恩东, 2017. 中国工业碳排放达峰的情景预测与减排潜力评估[J]. 中国人口·资源与环境, 27(10): 131-140.〔WANG Y, BI Y, WANG E D, 2017. Scene prediction of carbon emission
peak and emission reduction potential estimation in Chinese industry[J]. China
Population, Resources and Environment,
27(10): 131-140.〕
尹龙, 杨亚男, 章刘成, 2021. 中国居民消费碳排放峰值预测与分析[J]. 新疆社会科学(4): 42-50, 168.〔YIN L, YANG Y N, ZHANG L C, 2021.
Prediction of the peak carbon emission of Chinese residents’ consumption and
analysis[J]. Social Sciences in Xinjiang(4): 42-50, 168.〕
袁晓玲, 郗继宏, 李朝鹏, 等, 2020. 中国工业部门碳排放峰值预测及减排潜力研究[J]. 统计与信息论坛, 35(9): 72-82.〔YUAN X L, XI J H, LI C P, et al., 2020. A study on carbon emission
peak forecast and emission reduction potential of China’s Industrial sector[J].
Journal of Statistics and Information, 35(9): 72-82.〕
曾贤刚, 余畅, 2023. 中国农业农村碳排放结构与碳达峰分析[J]. 中国环境科学, 43(4):1906-1918.〔ZENG X G, YU C , SUN Y Q,
2023. Carbon emission structure and carbon peak of agriculture and rural areas
in China[J]. China Environmental Science, , 43(4):1906-1918.〕
赵慧卿, 黄先运, 2022. 基于情景分析的中国碳达峰预测[J]. 无锡商业职业技术学院学报, 22(3): 1-7.〔ZHAO H Q, HUANG X Y, 2022. Prediction of China’s carbon peaking
based on scenario analysis[J]. Journal of Wuxi Vocational Institute of
Commerce, 22(3): 1-7.〕
郑蕊, 刁书琪, 2022. 基于LMDI-PDA-MMI分解法的我国产业体系碳排放驱动因素研究[J]. 生态经济, 38(5): 33-39.〔ZHENG R, DIAO S Q, 2022. Investigating the driving factors of carbon
emissions in China’s industrial system using the LMDI-PDA-MMI method [J].
Ecological Economy, 38(5): 33-39.〕
钟兴菊, 龙少波, 2016. 环境影响的IPAT模型再认识[J]. 中国人口·资源与环境, 26(3): 61-68.〔ZHONG X J, LONG S B, 2016.
Rethinking the environmental impact of the IPAT model[J]. China
Population, Resources and Environment,
26(3): 61-68.〕
朱海, 王立国, 贺焱, 等, 2023. 多情景下中国省域旅游业碳达峰的时空特征研究[J]. 干旱区资源与环境, 37(1): 169-176.〔ZHU H, WANG L G, HE Y, et al., 2023. Spatial and temporal
characteristics of carbon peak of provincial tourism in China under multiple
scenarios[J]. Journal of Arid Land Resources and Environment, 37(1): 169-176.〕
NING L, PEI L, LI F, et al., 2021. Forecast
of China’s carbon emissions based on ARIMA method[J]. Discrete Dynamics in
Nature & Society, 2021:1-12.
PU X, YAO J, ZHENG R, 2022. Forecast of
energy consumption and carbon emissions in China’s building sector to 2060[J].
Energies, 15(14): 4950.
ZHANG X, ZHAO X R, JIANG Z J, et al., 2017.
How to achieve the 2030 CO2 emission-reduction targets for China’s industrial sector: retro-spective
decomposition and prospective trajectories[J]. Global Environmental Change, 44:
83-97.
ZHOU Y,
ZHANG J, HU S, 2021. Regression
analysis and driving force model building of CO2 emissions in China[J]. Scientific Reports, 11(1): 1-14.
ZHU L, HE L C, SHANG P P, et al., 2018.
Influencing factors and scenario forecasts of carbon emissions of the Chinese
power industry: based on a generalized divisia index model and monte carlo
simulation[J]. Energies, 11(9): 2398.
|