Resources & Industries ›› 2025, Vol. 27 ›› Issue (5): 61-76.DOI: 10.13776/j.cnki.resourcesindustries.20250902.001

Previous Articles     Next Articles

SPATIAL VARIANCE AND DRIVING FACTORS OF ENERGY ECOLOGICAL FOOTPRINT EFFICIENCY IN YANGTZE RIVER ECONOMIC ZONE

YU Nan1, 2, XU Chunming1, SUN Renjin2, CAO Shengsheng1   

  1. (1.College of Carbon Neutrality Future Technology, China University of Petroleum, Beijing 102249, China; 2.School of Economics and Management, China University of Petroleum, Beijing 102249, China)
  • Received:2024-12-17 Revised:2025-04-05 Online:2025-10-20 Published:2025-10-20

长江经济带能源生态足迹效率空间差异及驱动因子

于楠1,2,徐春明1,孙仁金2,曹胜晟1   

  1. (1.中国石油大学(北京)碳中和未来技术学院,北京 102249;2.中国石油大学(北京)经济管理学院,北京 102249)
  • 通讯作者: 徐春明,中国科学院院士,主要从事重油高效转化和清洁油品生产研究。E-mail:xcm@cup.edu.cn
  • 作者简介:于楠,博士、讲师,主要从事生态足迹核算、碳足迹核算及管理研究。E-mail:cupyunan@163.com
  • 基金资助:
    国家自然科学基金面上项目(72273151);国家自然科学基金创新群体项目(22021004);中国石油大学(北京)科研基金资助项目(2462025SZBH001)

Abstract: This paper, aiming at finding out the dynamic evolution and driving factors of energy ecological footprint efficiency in Yangtze River economic zone, and the feasible approaches to decreasing energy ecological footprint under regional coordinated development, establishes a measuring model and driving factors framework for energy ecological footprint efficiency via hidden carbon perspective and 2011-2021 panel data of 11 provinces (cities) in Yangtze River economic zone. Net original productivity model is applied to quantify the average absorbing capabilities of land to carbon and hidden carbon emissions of energy ecological footprint. Based on this, a measurement index system for energy ecological footprint efficiency is constructed. Variation coefficient is used to estimate the variance and changing trend of energy ecological footprint efficiency in provinces with their spatial distribution and regional difference depicted by kernel density estimation. Four classifications, i.e. geographic detector model and equal interval, natural breaks, and quantile and geometric interval of R language, are used to select the premium spatial dimension as model parameters through classified q values. Single factor impacts and factor interactions are used to analyze the driving factors and mechanism of spatial heterogeneity of energy ecological footprint efficiency. This paper presents suggestions based on spatial-temporal evolution and factors of regional green low carbon transformation. Energy ecological footprint efficiency shows a good developing trend from 2011 to 2021, and has undergone “stabilizing period” and “rising period” with substantial regional variance, highest in the downstream, followed by the middle stream, and lowest in the upstream. The overall distribution of energy ecological footprint efficiency displays a developing trend of “two peaks transitioning to more peaks, major peak left moving”; graded polarization gets intensified, and spatial variance is expanding, growing internally, but descending inter-regionally. The major factors driving the changes of energy ecological footprint efficiency in Yangtze River economic zone include energy consumption structure, GDP, industrial structure, urbanization, energy intensity, research and test levels, environmental regulations and education, with population and income per capita as the interactive factors of highest explanatory power, and environmental regulations and population interacting most frequently with other factors.

Key words: Yangtze River economic zone, energy ecological footprint efficiency, spatial variance, geographic detector, kernel density estimation

摘要: 为了探究长江经济带能源生态足迹效率的动态演变特征及其驱动机制,研究区域协调发展背景下降低能源生态足迹的可行路径,基于隐含碳视角,系统构建能源生态足迹效率测度模型与驱动因子分析框架,选取2011—2021年长江经济带11个省(市)的面板数据展开分析。首先,利用净初级生产力模型量化各省份土地对碳的平均吸收能力和各省份能源生态足迹的隐含碳排放,并以此为基础构建能源生态足迹效率测度指标体系。其次,运用变异系数对长江经济带各省份的能源生态足迹效率差异及差异变化趋势进行测度,并通过核密度估计方法刻画其空间分布动态与区域差异特征。再次,引入地理探测器模型,运用R语言GD包中的等间隔、自然断点、分位数和几何间隔4种分类方法,通过比较各分类结果的q值筛选出最优空间尺度作为模型参数。在此基础上,从单因子影响力和因子交互效应两个维度,系统解析能源生态足迹效率空间分异特征的驱动因素及其相互作用机制。最后,结合时空演化规律与驱动因子贡献度差异,提出针对性政策建议,为区域绿色低碳转型提供理论依据与实践参考。研究表明:1)2011—2021年长江经济带能源生态足迹效率发展态势总体向好,并经历了“稳定期”和“上升期”两个阶段,且呈现出显著的区域差异,下游地区最高,中游地区次之,上游地区最低;2)长江经济带能源生态足迹效率总体呈“双峰向多峰过渡、主波峰左移”的发展趋势,多级分化现象加强,空间差异逐步扩大,其中长江经济带区域内部能源生态足迹效率差异有扩大趋势,而区域间能源生态足迹效率差异总体呈下降趋势。3)能源消费结构、GDP、产业结构、城市化水平、能源强度、研究与试验发展水平、环境规制和受教育水平是长江经济带能源生态足迹效率变化的主要驱动因子,人口规模和人均可支配收入是具有最高解释力的交互因子,环境规制和人口规模与其他因子交互最为频繁。

关键词: 长江经济带, 能源生态足迹效率, 空间差异, 地理探测器, 核密度估计

CLC Number: