安海忠, 李华姣, 2022. 战略性矿产资源全产业链理论和研究前沿[J]. 资源与产业, 24(1): 8-14.〔AN H Z, LI H J, 2022. Theory and research advances in whole
industrial chain of strategic mineral resources[J]. Resources & Industries,
24(1): 8-14.〕
陈海涛, 2012. 基于灰色系统理论的我国石油消费对外依存度预测[J]. 生态经济(5): 103-106.〔CHEN H T, 2012. The forecast of degree of external dependence on oil
consumption in China based on grey system theory[J]. Ecological Economy (5):103-106.〕
陈锡康, 杨翠红, 祝坤福, 等, 2023. 2023年中国经济增长速度的预测分析与政策建议[J]. 中国科学院院刊, 38(1): 81-90.〔CHEN X K, YANG C H, ZHU K F, et al., 2023. Forecast of China’s
economic growth rate in 2023 and policy suggestions[J]. Bulletin of Chinese
Academy of Sciences, 38(1): 81-90.〕
崔伟杰, 2020. 全球镍资源产业供需格局分析及预测[D]. 北京: 中国地质大学(北京).〔CUI W J, 2020. Analysis and forecast of supply and demand pattern of
global nickel resource industry[D]. Beijing: China University of Geosciences
(Beijing).〕
董晓红, 冯芷蔚, 张家安, 等, 2022. 含非线性残差的新能源汽车规模预测方法[J]. 电力工程技术, 41(5): 76-84.〔DONG X H, FENG Z Y, ZHANG J A, et al., 2022. New energy vehicle
scale prediction method with nonlinear residuals[J]. Electric Power Engineering
Technology, 41(5): 76-84.〕
杜修立, 张昱昭, 2022. 中国城镇化率提升的动力分解与新发展阶段趋势预测: 基于国际比较的一种新方法[J]. 统计研究, 39(2): 33-47.〔DU X L, ZHANG Y Z, 2022. Driving-force decomposition increase of
China’s urbanization rate increase and trend forecast in the new development
stage: a new method based on international comparison[J]. Statistical Research,
39(2): 33-47.〕
高春亮, 魏后凯, 2013. 中国城镇化趋势预测研究[J]. 当代经济科学, 35(4): 85-90.〔GAO C L, WEI H K, 2013. Prediction study on the urbanization trends
of China[J]. Modern Economic Science, 35(4): 85-90.〕
高芯蕊, 王安建, 2010. 基于“S”规律的中国钢需求预测[J]. 地球学报, 31(5): 645-652.〔GAO X R, WANG A J, 2010. The prediction of China’s steel demand
based on S-shaped regularity[J]. Acta Geoscientica Sinica, 31(5): 645-652.〕
郭克莎, 彭继宗, 2022. 二三产业结构变动与经济发展质量: 上中等收入阶段向高收入阶段演进的国际经验[J]. 财贸经济, 43(8): 5-26.〔GUO K S, PENG J Z, 2022. The relationship between structural changes
in secondary and tertiary industries and the quality of economic development:
an international empirical study from the perspective of the evolution from the
upper-middle income stage to the high-income stage[J]. Finance and Trade
Economics, 43(8): 5-26.〕
黄建华, 张迪, 2022. 面向不确定物流需求的改进GM-BPNN组合预测方法[J]. 统计与决策, 38(16): 26-29.〔HUANG J H, ZHANG D, 2022. An improved GM-BPNN combined forecasting
method for uncertain logistics demand[J]. Statistics and Decision, 38(16): 26-29.〕
鞠建华, 张照志, 潘昭帅, 等, 2022. 我国战略性新兴产业矿产厘定与“十四五”需求分析[J]. 中国矿业, 31(9): 1-11.〔JU J H, ZHANG Z Z, PAN Z S, et al., 2022. Determination of mineral
resources in China’ s strategic emerging industries and analysis of the demand
of the“14th five year plan”[J]. China Mining Magazine, 31(9): 1-11.〕
李代红, 2014. 基于BP神经网络和GM(1,1)的我国三次产业预测[J]. 统计与决策(7): 81-83.〔LI D H, 2014. China’s three industry forecasts based on BP neural
network and GM(1,1)[J]. Statistics and Decision (7): 81-83.〕
李剑波, 鲜学福, 2016. 基于灰色神经网络模型的重庆能源需求预测[J]. 西南大学学报(自然科学版), 38(6): 136-141.〔LI J B, XIAN X F, 2016. Energy demand forecasting of Chongqing based
on grey neural network model[J]. Journal of Southwest University(Natural
Science), 38(6): 136-141.〕
刘连义, 刘思峰, 吴利丰, 2024. 基于离散时间灰色幂模型的新能源汽车销售量预测[J]. 中国管理科学, 32(1): 106-114.〔LIU L Y, LIU S F, WU L F, 2024. New energy vehicle sales forecast
based on Siscrete grey power model[J]. Chinese Journal of Management Science,
32(1): 106-114.〕
那丹妮, 王高尚, 2010. 全球镍需求趋势预测[J]. 资源与产业, 12(6): 53-57.〔NA D N, WANG G S, 2010. Forecast in global nickel demand trend[J].
Resources & Industries,12(6): 53-57.〕
彭乃驰, 党婷, 2016. 基于ARMA-GM-BP组合预测模型及应用[J]. 统计与决策(2): 80-82.〔PENG N C, DANG T, 2016. Based on ARMA-GM-BP
combined prediction model and application[J]. Statistics and Decision (2): 80-82.〕
清华大学中国经济思想与实践研究院ACCEPT宏观预测课题组, 2023. 重振增长〖KG*2〗释放活力: 2023—2027年中国经济发展展望[J]. 改革(1): 31-50.〔ACCEPT, 2023. Reinvigorate growth and release vitality: China’s
economic development outlook of 2023-2027[J]. Reform (1): 31-50.〕
任英欣, 刘金伟, 2022. 环境保护法视角下电镀行业发展策略研究[J]. 电镀与精饰, 44(11): 107-108.〔REN Y X, LIU J W, 2022. Research on the development strategy of
electroplating industry from the perspective of environmental protection law[J].
Plating and Finishing, 44(11): 107-108.〕
史育龙, 郭巍, 2022. 高质量推进我国城镇化与碳达峰的国际经验镜鉴: 基于OECD数据考察[J]. 生态经济, 38(4): 29-34.〔SHI Y L, GUO W, 2022. International
experience of promoting China’s urbanization and carbon peak with high quality:
based on OECD data[J]. Ecological Economy, 38(4): 29-34.〕
王安建, 高芯蕊, 2020. 中国能源与重要矿产资源需求展望[J]. 中国科学院院刊, 35(3): 338-344.〔WANG A J, GAO X R, 2020. China’s energy
and important mineral resources demand perspective[J]. Bulletin of the Chinese
Academy of Sciences, 35(3): 338-344.〕
王保贤, 刘毅, 2018. 基于灰色BP神经网络模型的人力资源需求预测方法[J]. 统计与决策, 34(16): 181-184.〔WANG B X, LIU Y, 2018. Human resource demand forecasting method
based on gray BP neural network model[J]. Statistics and Decision, 34(16): 181-184.〕
王欢, 马冰, 贾凌霄, 等, 2021. 碳中和目标下关键矿产在清洁能源转型中的作用、供需分析及其建议[J]. 中国地质, 48(6): 1720-1733.〔WANG H, MA B, JIA L X, et al., 2021. The role, supply and demand of
critical minerals in the clean energy transition under carbon neutrality
targets and their recommendations[J]. Geology in China, 48(6): 1720-1733.〕
王修, 李天骄, 王安建, 等, 2022. 基于主要工业产品产量的我国钽资源需求预测[J]. 矿业研究与开发, 42(6): 191-196.〔WANG X, LI T J, WANG A J, et al., 2022. The forecast of tantalum
resource demand based on the output of major industrial products in China[J].
Mining Research and Development, 42(6): 191-196.〕
闻少博, 陈志华, 刘雪勇, 2022. 中美博弈视角下中国稀土资源供应风险研究[J]. 资源与产业, 24(5): 1-9.〔WEN S B, CHEN Z H, LIU X Y, 2022. China’s REE supply risks viewing
from China-America’s competition[J]. Resources & Industries, 24(5): 1-9.〕吴振信, 帅加琴, 王书平, 2014. 基于改进GM(1,1)模型的中国铜消费需求预测[J]. 工业技术经济, 33(8): 9-14.〔WU Z X, SHUAI J Q, WANG S P, 2014. Forecasting of Chinese copper
demand based on improved gray model[J]. Journal of Industrial Technological
Economics, 33(8): 9-14.〕
邢佳韵, 张晓鹤, 陈其慎, 等, 2021. “二元消费”影响下的镍供需形势分析[J]. 地球学报, 42(2): 251-257.〔XING J Y, ZHANG X H, CHEN Q S, et al., 2021. An analysis of nickel
supply and demand situation under the influence of “dual consumption”[J]. Acta Geoscientica Sinica, 42(2): 251-257.〕
徐爱东, 陈瑞瑞, 李烁, 等, 2021. 镍钴行业发展形势分析及建议[J]. 中国有色冶金, 50(6): 9-15.〔XU A D, CHEN R R, LI S, et al., 2021.
Analysis and suggestions on the development of nickel-cobalt industry[J]. China
Nonferrous Metallurgy, 50(6): 9-15.〕
徐奇栋, 吕启全, 廖福源, 2016. 基于灰色系统理论对矿产资源需求的预测研究: 以浙江省为例[J]. 科技通报, 32(10): 17-20.〔XU Q D, LÜ Q Q, LIAO F Y, 2016. Forecast and study on the minerals
resources demand based on the grey system theory: taking Zhejiang province as
an example[J]. Bulletin of Science and Technology, 32(10): 17-20.〕
杨俊峰, 潘寻, 2021. “十四五”中国锂动力电池产业关键资源供需分析[J]. 有色金属(冶炼部分)(6): 37-41.〔YANG J F, PAN X, 2021. Analysis on supply and demand of key
resources of lithium power battery industry in China during the 14th Five-Year
Plan period[J]. Nonferrous Metals(Extractive Metallurgy) (6): 37-41.〕
尹伟华, 2021. “十四五”时期我国产业结构变动特征及趋势展望[J]. 中国物价(9): 3-6.〔YIN W H, 2021. The characteristics and
prospects industrial structure in China during the 14th Five-Year Plan[J].
China Price (9): 3-6.〕
张俊深, 袁程炜, 2016. 基于BP神经网络与修正GM(1,1)模型的能源消费组合预测[J]. 统计与决策(5): 90-93.〔ZHANG J S, YUAN C W, 2016. Energy consumption combination prediction
based on BP neural network and modified GM(1,1) model[J]. Statistics and Decision (5): 90-93.〕
张明喜, 丛树海, 2009. 我国财政风险非线性预警系统: 基于BP神经网络的研究[J]. 经济管理, 31(5): 147-153.〔ZHANG M X, CONG S H, 2009. Nonlinear
early warning system of financial risk in China: research based on BP neural
network[J]. Economic Management Journal, 31(5): 147-153.〕
张鹏, 2020. 小样本时间序列灰色预测关键技术研究[D]. 成都: 电子科技大学.〔ZHANG P, 2020. Research on key techniques of grey prediction for
small sample time series[D]. Chengdu: University of Electronic Science and
Technology.〕
张晓晶, 2022. 我国中长期增长的预测、挑战与应对[J]. 国外社会科学(5): 36-42.〔ZHANG X J, 2022. China’s medium and long-term growth: forecasts,
challenges and responses[J]. Social Sciences International (5): 36-42.〕
张泽南, 张照志, 吴晴, 等, 2020. 中国锂矿资源需求预测[J]. 中国矿业, 29(7): 9-15.〔ZHANG Z N, ZHANG Z Z, WU Q, et al., 2020. Chinese lithium mineral
resource demand forecast[J]. China Mining Magazine, 29(7): 9-15.〕
郑明贵, 于明, 范秋蓉, 等, 2023. 中国2025—2035年碳酸锂需求预测: 基于灰色关联分析和ARIMA-GM-BP神经网络的组合模型[J]. 地球科学进展, 38(4): 377-387.〔ZHENG M G, YU M, FAN Q R, et al., 2023. China’s lithium carbonate
demand forecast 2025—2035: a combined model based on grey correlation analysis and the
ARIMA-GM-BP neural network[J]. Advances in Earth Science, 38(4): 377-387.〕
中国社会科学院宏观经济研究中心课题组, 李雪松, 陆旸, 等, 2020. 未来15年中国经济增长潜力与“十四五”时期经济社会发展主要目标及指标研究[J]. 中国工业经济(4): 5-22.〔RESEARCH GROUP OF THE MACROECONOMIC RESEARCH CENTER OF THE CASS, LI
X S, LU Y, et al., 2020. Research on the potential growth of the chinese
economy in the next 15 years and the main goals and indicators of economic and
social development during the 14th Five-Year Plan period[J]. China Industrial
Economics (4): 5-22.〕
中国有色金属报, 2021. 电动车用镍需求旺盛[J]. 中国有色冶金(4): 78.〔CHINA NONFERROUS METALS NEWS, 2021. Nickel for electric vehicles is
in high demand[J]. China Nonferrous Metallurgy (4): 78.〕
中华人民共和国自然资源部, 2016. 全国矿产资源规划(2016—2020年)[EB/OL]. (2016-11-15)[2023-05-06]. http://g. mnr. gov.
cn/201701/t20170123_1430456. html.〔Ministry of Natural Resources of the People’s Republic of China,
2016. National mineral resources planning (2016—2020)[EB/OL]. (2016-11-15)[2023-05-06]. http://g. mnr. gov.
cn/201701/t20170123_1430456. html.〕
中华人民共和国自然资源部, 2022. 中国矿产资源报告2022[M]. 北京: 地质出版社.〔Ministry of Natural Resources of the People’s Republic of China,
2022. China mineral resources report 2022[M]. Beijing: Geology Press.〕
周文浩, 曾波, 2020. 灰色关联度模型研究综述[J]. 统计与决策, 36(15): 29-34.〔ZHOU W H, ZENG B, 2020. A research review of grey relational degree
model[J]. Statistics and Decision, 36(15): 29-34.〕
周扬, 吴文祥, 胡莹, 等, 2010. 基于组合模型的能源需求预测[J]. 中国人口·资源与环境, 20(4): 63-68.〔ZHOU Y, WU W X, HU Y, et al., 2010. Energy demand forecasting based
on combined model[J]. China Population, Resources and Environment,20(4):63-68.〕
朱强, 2010. 基于灰色系统理论的经济建模方法[J]. 统计与决策(11): 27-28.〔ZHU Q, 2010. Economic modeling methods based on grey systems theory[J].
Statistics and Decision (11): 27-28.〕
朱晓宵, 刘明, 曹杰, 2023. 基于滚动灰色GM(1,1)修正的新冠肺炎疫情演化情景重建[J]. 运筹与管理, 32(10): 95-101.〔ZHU X X, LIU M, CAO J, 2023. Reconstruction of COVID-19 epidemic
scenario: a modified model based on rolling grey GM(1,1)[J]. Operations
Research and Management Science, 32(10): 95-101.〕
BAHMANI M, NEJATI M, GHASEMINEJAD A, et
al., 2021. A novel hybrid approach based on BAT algorithm with artificial
neural network to forecast Iran’s oil consumption[J]. Mathematical Problems in
Engineering (8): 1-9.
ESCAVY J I, HERRERO M J, TRIGOS L, et al.,
2020. Demographic vs economic variables in the modelling and forecasting of the
demand of aggregates: the case of the Spanish market (1995-2016)[J]. Resources
Policy, 65(9):101537. DOI:10. 1016/j. resourpol. 2019. 101537.
GALOS K, LEWICKA E D, KAMYK J, et al.,
2021. Forecast trends in demand for deficit key minerals for the Polish economy[J].
Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 37(3): 5-29.
LI B L, BICKNELL K B, RENWICK A, 2019. Peak
phosphorus, demand trends and implications for the sustainable management of
phosphorus in China[J]. Resources, Conservation and Recycling, 146: 316-328.
MA M L, WANG Z Z, 2019. Prediction of the
energy consumption variation trend in South Africa based on ARIMA, NGM and NGM-ARIMA
models[J]. Energies, 13(1): 10.
PUENTES J A, RIBEIRO C O, RUELAS E A, et
al., 2021. Ethanol fuel demand forecasting in Brazil using a LSTM recurrent
neural network approach[J]. IEEE Latin America Transactions, 19(4): 551-558.
REN M, DAI J Y, ZHU W C, et al., 2021.
Combined modelling for iron ore demand forecasting with intelligent
optimization algorithms[J]. Gospodarka Surowcami Mineralnymi-Mineral Resources
Management, 37(1): 21-38.
SVERDRUP H U, OLAFSDOTTIR A H, 2019.
Assessing the long-term global sustainability of the production and supply for
stainless steel[J]. Biophysical Economics and Resource Quality, 4(2): 8.
|