陈长坤, 陈以琴, 施波, 等, 2018. 雨洪灾害情境下城市韧性评估模型[J]. 中国安全科学学报, 28(4): 1-6.〔CHEN C K, CHEN Y Q, SHI B, et al., 2018. A model for evaluating urban resilience to rainstorm flood disasters[J]. China Safety Science Journal, 28(4): 1-6.〕
陈鹏, 赵洪阳, 张继权, 等, 2020. 城市内涝灾害受灾人口评估方法与实证研究: 以哈尔滨市道里区为例[J]. 地理科学, 40(1): 158-164.〔CHEN P, ZHAO H Y, ZHANG J Q, et al., 2020. Assessment method and empirical study on the population affected by urban waterlogging disaster: Daoli district of Harbin as an example[J]. Scientia Geographica Sinica, 40(1): 158-164.〕
郭羽羽, 罗福周, 钟兴润, 2021. 基于熵权-正态云模型的城市安全韧性评估研究[J]. 灾害学, 36(4): 168-174.〔GUO Y Y, LUO F Z, ZHONG X R, 2021. Study on urban safety resilience assessment based on entropy weightnormal cloud model[J]. Journal of Catastrophology, 36(4): 168-174.〕
黄亚江, 李书全, 项思思, 2021. 基于AHP-PSO模糊组合赋权法的地铁火灾安全韧性评估[J]. 灾害学, 36(3): 15-20, 40.〔HUANG Y J, LI S Q, XIANG S S, 2021. Evaluation of subway fire safety resilience based on AHP-PSO fuzzy combination weighting method[J]. Journal of Catastrophology, 36(3): 15-20, 40.〕
李亚, 翟国方, 2017. 我国城市灾害韧性评估及其提升策略研究[J]. 规划师, 33(8): 5-11.〔LI Y, ZHAI G F, 2017. China's urban disaster resilience evaluation and promotion[J]. Planners, 33(8): 5-11.〕
孟晓静, 陈鑫, 陈佳静, 等, 2023. 组合赋权-TOPSIS在洪涝灾害下城市区域韧性评估中的应用[J]. 安全与环境学报, 23(5): 1465-1473.〔MENG X J, CHEN X, CHEN J J, et al., 2023. Application of combination weighting and TOPSIS in the assessment of urban regional resilience under flood disaster[J]. Journal of Safety and Environment, 23(5): 1465-1473.〕
彭翀, 林樱子, 吴宇彤, 等, 2021. 基于“成本-能力-能效”的长江经济带城市韧性评估[J]. 长江流域资源与环境, 30(8): 1795-1808.〔PENG C, LIN Y Z, WU Y T, et al., 2021. Urban resilience evaluation of the Yangtze River economic belt based on “cost-capacity-efficiency”[J]. Resources and Environment in the Yangtze Basin, 30(8): 1795-1808.〕
屈金芝, 张艳松, 张艳, 等, 2022. 基于熵权法TOPSIS模型中国钛资源供应安全评价[J]. 资源与产业, 24(1): 26-36.〔QU J Z, ZHANG Y S, ZHANG Y, et al., 2022. Supply security of China’s titanium resource based on entropy TOPSIS model[J]. Resources & Industries, 24(1): 26-36.〕
王光辉, 刘怡君, 王红兵, 2014. 基于耗散结构理论的城市风险形成及演化机理研究[J]. 城市发展研究, 21(11): 81-86.〔WANG G H, LIU Y J, WANG H B, 2014. Study on formation and evolution mechanism of urban risk based on dissipative structure theory[J]. Urban Development Studies, 21(11): 81-86.〕
肖圣, 多玲花, 邹自力, 2023. 基于“风险-连通性-潜力”的南昌市生态韧性评估[J]. 应用生态学报, 34(3): 733-741.〔XIAO S, DUO L H, ZOU Z L, 2023. Assessment of ecological resilience in Nanchang based on “riskconnectivitypotential”[J]. Chinese Journal of Applied Ecology, 34(3): 733-741.〕
徐江, 邵亦文, 2015. 韧性城市: 应对城市危机的新思路[J]. 国际城市规划, 30(2): 1-3.〔XU J, SHAO Y W, 2015. Resilient cities: a new shift to urban crisis management[J]. Urban Planning International, 30(2): 1-3.〕
徐姗, 员鑫淼, 邓羽, 2023. 北京城市功能空间演进的结构模式与聚合规律[J]. 地理学报, 78(8): 2092-2104.〔XU S, YUAN X M, DENG Y, 2023. Evolution of urban functional space in Beijing: modes and aggregation laws[J]. Acta Geographica Sinica, 78(8): 2092-2104.〕
徐志胜, 冯凯, 白国强, 等, 2004. 关于城市公共安全可持续发展理论的初步研究[J]. 中国安全科学学报, 14(1): 3-6.〔XU Z S, FENG K, BAI G Q, et al., 2004. Preliminary study on sustainable development theory of urban community safety[J]. China Safety Science Journal, 14(1): 3-6.〕
叶进, 曹陇华, 常丽霞, 2008. 耗散结构对生态风险管理的启示[J]. 科学·经济·社会(2): 70-74, 78.〔YE J, CAO L H, CHANG L X, 2008. Enlightenment of dissipative structure on the ecological risk management[J]. Science Economy Society(2): 70-74, 78.〕
湛垦华, 沈小峰, 1982. 普利高津与耗散结构理论[M]. 西安: 陕西科学技术出版社.
张振, 张以晨, 张继权, 等, 2023. 基于熵权法和TOPSIS模型的城市韧性评估: 以长春市为例[J]. 灾害学, 38(1): 213-219.〔ZHANG Z, ZHANG Y C, ZHANG J Q, et al., 2023. Urban resilience assessment based on entropy weight method and TOPSIS model: take Changchun city as an example[J]. Journal of Catastrophology, 38(1): 213-219.〕
郑艳, 2017. 新型城镇化背景下我国韧性城市建设的思考[J]. 城市与减灾(4): 61-65.
CUTTER S L, ASH K D, EMRICH C T, 2014. The geographies of community disaster resilience[J]. Global Environmental Change, 29: 65-77.
GRIMM N B, FAETH S H, GOLUBIEWSKI N E, et al., 2008. Global change and the ecology of cities[J]. Science, 319: 756760.
OUYANG M, DUE-AS-OSORIO L, MIN X, 2012. A three-stage resilience analysis framework for urban infrastructure systems[J]. Structural Safety, 36/37(1): 23-31.
|