|   
	丁舟波,  李彬,  牛继高,  等,  2017. 电动汽车燃料生命周期评价研究[J]. 森林工程,  33(6): 56-59.                               
 
	丰田中国,  2017. 丰田混合动力车全球累计销量突破1000万台[EB/OL]. (2017-02-14)[2020-04-25].  http: //www. toyota. com. cn/active/2017/1000w/. 
 
	国家统计局,  2019a. 中国统计年鉴[M]. 北京: 中国统计出版社. 
 
	国家统计局,  2019b. 2018年国民经济和社会发展统计公报[R]. 北京: 国家统计局. 
 
	国家统计局, 2020. 2019年国民经济和社会发展统计公报[R]. 北京: 国家统计局. 
 
	孔德洋, 唐闻翀, 柳文灿, 等, 2018. 燃料电池汽车能耗、排放与经济性评估[J]. 同济大学学报(自然科学版), 46(4): 498-503, 523. 
 
	李书华, 2014. 电动汽车全生命周期分析及环境效益评价[D]. 长春: 吉林大学. 
 
	刘宏, 王贺武, 罗茜, 等,  2007. 纯电动汽车生命周期3E评价及微型化发展[J]. 交通科技与经济, 9(6): 45-48. 
 
	孟先春, 2007. 基于全生命周期理论的两种公交车成本差异分析[D]. 长沙: 湖南大学. 
 
	汽车之家, 2019. 全球累计销售41. 5万辆, 从聆风看日产布局电动车[EB/OL]. (2019-07-03)[2020-04-25]. http: //www.toyota.com.cn/active/2017/1000w/. 
 
	人民网, 2020. 多重政策刺激消费 新能源汽车驶入新景气周期[EB/OL]. (2020-04-20)[2020-04-25]. http: //auto. people. com.cn/n1/2020/0420/c1005-31680182. html. 
 
	施晓清, 李笑诺, 杨建新, 2013.低碳交通电动汽车碳减排潜力及其影响因素分析[J]. 环境科学, 34(1): 385-394.
 
	石油商报,2020. 2019年国内外油气行业发展报告[EB/OL].(2020-04-07)[2020-04-25]. http: //center. cnpc. com. cn/sysb/system/2020/03/13/001766599. shtml. 
 
	王恩慈, 范松, 吴雪斌, 等, 2017. 基于GREET模型的新能源汽车污染排放特征分析[J]. 上海大学学报(自然科学版), 23(5): 810-820.
 
	杨峰, 傅俊, 2009. 纯电动汽车经济性比较与分析[J]. 武汉理工大学学报(信息与管理工程版), 31(2): 286-288, 296
 
	杨建新,  2002. 产品生命周期评价方法及应用[M]. 北京: 气象出版社: 69-104. 
 
	张茜, 2012. 基于生命周期评价理论的车用替代燃料路径选择研究[D]. 天津: 天津大学. 
 
	中国电力企业联合会, 2020. 2019年全国电力工业统计快报[R]. 北京: 中国电力企业联合会. 
 
	AGUIRRE K, EISENHARDT L, LIM C,  et al, 2012. Lifecycle analysis comparison of a battery electric vehicle and a conventional gasoline vehicle[R]. Sacramento: California Air Resource Board. 
 
	DUNN J B, GAINES L, BARNES M, et al,  2014. Material and energy flows in the materials production, assembly,  and end-of-life stages of the automotive lithium-ion battery life cycle[R]. Lemont: Argonne National Lab. 
 
	HAN J, FORMAN G S, ELGOWAINY A,  et al, 2015.  A comparative assessment of resource efficiency in petroleum refining[J]. Fuel, 157: 292-298. 
 
	HAWKINS T R, SINGH B,  MAJEAU-BETTEZ G,  et al, 2013. Comparative environmental life cycle assessment of conventional and electric vehicles[J]. Journal of Industrial Ecology, 17(1): 53-64. 
 
	HERTWICH E G, HAMMITT J K, 2001. A decision-analytic framework for impact assessment part I: LCA and decision analysis[J]. The International Journal of Life Cycle Assessment,  6(1): 5-12. 
 
	HUO H, CAI H, ZHANG Q, et al,  2015.  Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: a comparison between China and the US[J]. Atmospheric Environment, 108: 107-116. 
 
	ISO(International Organization for Standardization), 2006. ISO 14040: 2006 environmental management-life cycle assessment: principles and framework [S]. Geneva: ISO
 
	LI S H, LI N N, LI J, et al, 2012.  American Applied Sciences Research Institute(AASRI): proceedings of 2012 AASRI conference on power and energy systems(PES 2012 V2),  Hong Kong, China,  September 4, 2012[C]. Amsterdam: Elsevier. 
 
	RIBAU J P, SILVA C M, SOUSA J M C,  2014.Efficiency, cost and life cycle CO2 optimization of fuel cell hybrid and plug-in hybrid urban buses[J].  Applied Energy,  129: 320-335. 
 
	SCHUCKERT M, SAUR K, FLORIN H,  et al, 1996. Life cycle analysis: getting the total picture on vehicle engineering alternatives[J]. Automotive Engineering International, 104(3): 49-52. 
 
	SHEN W, HAN W J, CHOCK D, et al,  2012. Well-to-wheels life-cycle analysis of alternative fuels and vehicle technologies in China[J].  Energy Policy, 49: 296-307. 
 
	SIMONS A, BAUER C, 2015. A life-cycle perspective on automotive fuel cells[J]. Applied Energy, 157: 884-896. 
 
	WEISS M A, HEYWOOD J B,  SCHAFER A, et al, 2003. Comparative assessment of fuel cell cars[R]. Cambridge MA: Massachusetts Institute of Technology. 
 
	ZAMEL N, LI X G, 2006. Life cycle analysis of vehicles powered by a fuel cell and by internal combustion engine for Canada[J].  Journal of Power Sources, 155(2): 297-310.
  |